General relativity |
---|
This is currently being merged. After a discussion, consensus to merge this with content from Non-relativistic gravitational fields was found. You can help implement the merge by following the instructions at Help:Merging and the resolution on the discussion. Process started in April 2023. |
In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.
The parameterized post-Newtonian formalism or PPN formalism, is a version of this formulation that explicitly details the parameters in which a general theory of gravity can differ from Newtonian gravity. It is used as a tool to compare Newtonian and Einsteinian gravity in the limit in which the gravitational field is weak and generated by objects moving slowly compared to the speed of light. In general, PPN formalism can be applied to all metric theories of gravitation in which all bodies satisfy the Einstein equivalence principle (EEP). The speed of light remains constant in PPN formalism and it assumes that the metric tensor is always symmetric.
The earliest parameterizations of the post-Newtonian approximation were performed by Sir Arthur Stanley Eddington in 1922. However, they dealt solely with the vacuum gravitational field outside an isolated spherical body. Ken Nordtvedt (1968, 1969) expanded this to include seven parameters in papers published in 1968 and 1969. Clifford Martin Will introduced a stressed, continuous matter description of celestial bodies in 1971.
The versions described here are based on Wei-Tou Ni (1972), Will and Nordtvedt (1972), Charles W. Misner et al. (1973) (see Gravitation (book)), and Will (1981, 1993) and have ten parameters.
Ten post-Newtonian parameters completely characterize the weak-field behavior of the theory. The formalism has been a valuable tool in tests of general relativity. In the notation of Will (1971), Ni (1972) and Misner et al. (1973) they have the following values:
How much space curvature is produced by unit rest mass? | |
How much nonlinearity is there in the superposition law for gravity ? | |
How much gravity is produced by unit kinetic energy ? | |
How much gravity is produced by unit gravitational potential energy ? | |
How much gravity is produced by unit internal energy ? | |
How much gravity is produced by unit pressure ? | |
Difference between radial and transverse kinetic energy on gravity | |
Difference between radial and transverse stress on gravity | |
How much dragging of inertial frames is produced by unit momentum ? | |
Difference between radial and transverse momentum on dragging of inertial frames |
is the 4 by 4 symmetric metric tensor with indexes and going from 0 to 3. Below, an index of 0 will indicate the time direction and indices and (going from 1 to 3) will indicate spatial directions.
In Einstein's theory, the values of these parameters are chosen (1) to fit Newton's Law of gravity in the limit of velocities and mass approaching zero, (2) to ensure conservation of energy, mass, momentum, and angular momentum, and (3) to make the equations independent of the reference frame. In this notation, general relativity has PPN parameters and
In the more recent notation of Will & Nordtvedt (1972) and Will (1981, 1993, 2006) a different set of ten PPN parameters is used.
The meaning of these is that , and measure the extent of preferred frame effects. , , , and measure the failure of conservation of energy, momentum and angular momentum.
In this notation, general relativity has PPN parameters
The mathematical relationship between the metric, metric potentials and PPN parameters for this notation is:
where repeated indexes are summed. is on the order of potentials such as , the square magnitude of the coordinate velocities of matter, etc. is the velocity vector of the PPN coordinate system relative to the mean rest-frame of the universe. is the square magnitude of that velocity. if and only if , otherwise.
There are ten metric potentials, , , , , , , , , and , one for each PPN parameter to ensure a unique solution. 10 linear equations in 10 unknowns are solved by inverting a 10 by 10 matrix. These metric potentials have forms such as:
which is simply another way of writing the Newtonian gravitational potential,
where is the density of rest mass, is the internal energy per unit rest mass, is the pressure as measured in a local freely falling frame momentarily comoving with the matter, and is the coordinate velocity of the matter.
Stress-energy tensor for a perfect fluid takes form
Examples of the process of applying PPN formalism to alternative theories of gravity can be found in Will (1981, 1993). It is a nine step process:
A table comparing PPN parameters for 23 theories of gravity can be found in Alternatives to general relativity#Parametric post-Newtonian parameters for a range of theories.
Most metric theories of gravity can be lumped into categories. Scalar theories of gravitation include conformally flat theories and stratified theories with time-orthogonal space slices.
In conformally flat theories such as Nordström's theory of gravitation the metric is given by and for this metric , which drastically disagrees with observations. In stratified theories such as Yilmaz theory of gravitation the metric is given by and for this metric , which also disagrees drastically with observations.
Another class of theories is the quasilinear theories such as Whitehead's theory of gravitation. For these . The relative magnitudes of the harmonics of the Earth's tides depend on and , and measurements show that quasilinear theories disagree with observations of Earth's tides.
Another class of metric theories is the bimetric theory. For all of these is non-zero. From the precession of the solar spin we know that , and that effectively rules out bimetric theories.
Another class of metric theories is the scalar–tensor theories, such as Brans–Dicke theory. For all of these, . The limit of means that would have to be very large, so these theories are looking less and less likely as experimental accuracy improves.
The final main class of metric theories is the vector–tensor theories. For all of these the gravitational "constant" varies with time and is non-zero. Lunar laser ranging experiments tightly constrain the variation of the gravitational "constant" with time and , so these theories are also looking unlikely.
There are some metric theories of gravity that do not fit into the above categories, but they have similar problems.
Bounds on the PPN parameters from Will (2006) and Will (2014)
Parameter | Bound | Effects | Experiment |
---|---|---|---|
2.3×10−5 | Time delay, light deflection | Cassini tracking | |
8×10−5 | Perihelion shift | Perihelion shift | |
2.3×10−4 | Nordtvedt effect with assumption | Nordtvedt effect | |
4×10−9 | Spin precession | Millisecond pulsars | |
1×10−4 | Orbital polarization | Lunar laser ranging | |
4×10−5 | Orbital polarization | PSR J1738+0333 | |
2×10−9 | Spin precession | Millisecond pulsars | |
4×10−20 | Self-acceleration | Pulsar spin-down statistics | |
9×10−4 | Nordtvedt effect | Lunar laser ranging | |
0.02 | Combined PPN bounds | — | |
4×10−5 † | Binary-pulsar acceleration | PSR 1913+16 | |
1×10−8 | Newton's 3rd law | Lunar acceleration | |
0.006 | ‡— | Kreuzer experiment |
†Will, C. M. (10 July 1992). "Is momentum conserved? A test in the binary system PSR 1913 + 16". Astrophysical Journal Letters. 393 (2): L59–L61. Bibcode:1992ApJ...393L..59W. doi:10.1086/186451. ISSN 0004-637X.
‡ Based on from Will (1976, 2006). It is theoretically possible[ clarification needed ] for an alternative model of gravity to bypass this bound, in which case the bound is from Ni (1972).
In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.
In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.
In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.
In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
The optical metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In supersymmetry, type IIA supergravity is the unique supergravity in ten dimensions with two supercharges of opposite chirality. It was first constructed in 1984 by a dimensional reduction of eleven-dimensional supergravity on a circle. The other supergravities in ten dimensions are type IIB supergravity, which has two supercharges of the same chirality, and type I supergravity, which has a single supercharge. In 1986 a deformation of the theory was discovered which gives mass to one of the fields and is known as massive type IIA supergravity. Type IIA supergravity plays a very important role in string theory as it is the low-energy limit of type IIA string theory.
In supersymmetry, type I supergravity is the theory of supergravity in ten dimensions with a single supercharge. It consists of a single supergravity multiplet and a single Yang–Mills multiplet. The full non-abelian action was first derived in 1983 by George Chapline and Nicholas Manton. Classically the theory can admit any gauge group, but a consistent quantum theory resulting in anomaly cancellation only exists if the gauge group is either or . Both these supergravities are realised as the low-energy limits of string theories, in particular of type I string theory and of the two heterotic string theories.