DGP model

Last updated

The DGP model is a model of gravity proposed by Gia Dvali, Gregory Gabadadze, and Massimo Porrati in 2000. [1] The model is popular among some model builders, but has resisted being embedded into string theory.

Contents

Overview

The DGP model assumes the existence of a 4+1-dimensional Minkowski space, within which ordinary 3+1-dimensional Minkowski space is embedded. The model assumes an action consisting of two terms: One term is the usual Einstein–Hilbert action, which involves only the 4-D spacetime dimensions. The other term is the equivalent of the Einstein–Hilbert action, as extended to all 5 dimensions. The 4-D term dominates at short distances, and the 5-D term dominates at long distances.

The model was proposed in part in order to reproduce the cosmic acceleration of dark energy without any need for a small but non-zero vacuum energy density. But critics [2] argue that this branch of the theory is unstable. However, the theory remains interesting because of Dvali's claim that the unusual structure of the graviton propagator makes non-perturbative effects important in a seemingly linear regime, such as the solar system. Because there is no four-dimensional, linearized effective theory that reproduces the DGP model for weak-field gravity, the theory avoids the vDVZ discontinuity that otherwise plagues attempts to write down a theory of massive gravity.

In 2008, Fang et al. argued that recent cosmological observations (including measurements of baryon acoustic oscillations by the Sloan Digital Sky Survey, and measurements of the cosmic microwave background and type 1a supernovae) is in direct conflict with the DGP cosmology [3] unless a cosmological constant or some other form of dark energy is added. [4] However, this negates the appeal of the DGP cosmology, which accelerates without needing to add dark energy.

See also

Related Research Articles

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also, an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

Brane cosmology Several theories in particle physics and cosmology related to superstring theory and M-theory

Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

In physics, Randall–Sundrum models are models that describe the world in terms of a warped-geometry higher-dimensional universe, or more concretely as a 5-dimensional anti-de Sitter space where the elementary particles are localized on a (3 + 1)-dimensional brane or branes.

Hierarchy problem Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

The Hartle–Hawking state is a proposal in theoretical physics concerning the state of the Universe prior to the Planck epoch. It is named after James Hartle and Stephen Hawking.

The Alternative models to the Standard Higgs Model are models which are considered by many particle physicists to solve some of the Higgs boson's existing problems. Two of the most currently researched models are quantum triviality, and Higgs hierarchy problem.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

Savas Dimopoulos is a particle physicist at Stanford University. He worked at CERN from 1994 to 1997. Dimopoulos is well known for his work on constructing theories beyond the Standard Model.

Giorgi (Gia) Dvali is a professor of physics at New York University's Center for Cosmology and Particle Physics and at LMU Munich, and is a director at the Max Planck Institute for Physics, Munich. He received his Ph.D. in high energy physics and cosmology from Tbilisi State University, Georgia in 1992. Before joining the NYU faculty in 1998, he worked at two renowned international research centers: the Abdus Salam International Center for Theoretical Physics in Trieste, Italy, and later at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland. His major research interests are large extra dimensions, quantum gravity, and the very early universe.

Christopher T. Hill

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first discussions of the two-Higgs-doublet model.

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. The model tries to explain this problem by postulating that our universe, with its four dimensions, exists on a membrane in a higher dimensional space. It is then suggested that the other forces of nature operate within this membrane and its four dimensions, while gravitons can propagate across the extra dimensions. This would explain why gravity is very weak compared to the other fundamental forces. The size of the dimensions in ADD is around the order of the TeV scale, which results in it being experimentally probeable by current colliders, unlike many exotic extra dimensional hypotheses that have the relevant size around the Planck scale.

Gregory Gabadadze is a physicist of Georgian origin. He is a Professor and the Chair of the Department of Physics at New York University, where he served previously as the Director of the Center for Cosmology and Particle Physics.

Sergei D. Odintsov is a Russian astrophysicist active in the fields of cosmology, quantum field theory and quantum gravity. Odintsov is an ICREA Research Professor at the Institut de Ciències de l'Espai (Barcelona) since 2003. He also collaborates as group leader at research projects of the Tomsk State Pedagogical University. He is editor-in-chief of Symmetry, and is a member of the editorial boards of Gravitation and Cosmology, International Journal of Geometric Methods in Modern Physics, International Journal of Modern Physics D, Journal of Gravity, Universe, and the Tomsk State Pedagogical University Bulletin. Odintsov also is an advisory panel member of Classical and Quantum Gravity.

Light front holography

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

The Bousso bound captures a fundamental relation between quantum information and the geometry of space and time. It appears to be an imprint of a unified theory that combines quantum mechanics with Einstein's general relativity. The study of black hole thermodynamics and the information paradox led to the idea of the holographic principle: the entropy of matter and radiation in a spatial region cannot exceed the Bekenstein-Hawking entropy of the boundary of the region, which is proportional to the boundary area. However, this "spacelike" entropy bound fails in cosmology; for example, it does not hold true in our universe.

In theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because the primary role of mass is to mediate gravitational interaction between bodies, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.

The asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables. Moreover, it has predictive power: Generically an arbitrary starting configuration of coupling constants given at some RG scale does not run into the fixed point for increasing scale, but a subset of configurations might have the desired UV properties. For this reason it is possible that — assuming a particular set of couplings has been measured in an experiment — the requirement of asymptotic safety fixes all remaining couplings in such a way that the UV fixed point is approached.

In physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are:

References

  1. Gia Dvali; Gregory Gabadadze; Massimo Porrati (2000). "4D gravity on a brane in 5D Minkowski space". Physics Letters. B485 (1–3): 208–214. arXiv: hep-th/0005016 . Bibcode:2000PhLB..485..208D. doi:10.1016/S0370-2693(00)00669-9.
  2. Gorbunov, Dimitry; Koyama, Kazuya; Sibiryakov, Sergei (2006). "More on ghosts in the Dvali-Gabadaze-Porrati model". Physical Review. D73 (4): 044016. arXiv: hep-th/0512097 . Bibcode:2006PhRvD..73d4016G. doi:10.1103/PhysRevD.73.044016.
  3. Wenjuan Fang; Sheng Wang; Wayne Hu; Zoltán Haiman; Lam Hui; Morgan May (2008). "Challenges to the DGP model from horizon-scale growth and geometry". Physical Review. D78 (10): 103509. arXiv: 0808.2208 . Bibcode:2008PhRvD..78j3509F. doi:10.1103/PhysRevD.78.103509.
  4. Lucas Lombriser; Wayne Hu; Wenjuan Fang; Uroš Seljak (2009). "Cosmological constraints on DGP braneworld gravity with brane tension". Physical Review. D80 (6): 063536. arXiv: 0905.1112 . Bibcode:2009PhRvD..80f3536L. doi:10.1103/PhysRevD.80.063536.