Toy model

Last updated

In scientific modeling, a toy model is a deliberately simplistic model with many details removed so that it can be used to explain a mechanism concisely. It is also useful in a description of the fuller model.

Contents

The phrase "tinker-toy model" is also used,[ citation needed ] in reference to the Tinkertoys product used for children's constructivist learning.

Examples

Examples of toy models in physics include:

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever present matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction primarily observed as mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

<span class="mw-page-title-main">Shape of the universe</span> Local and global geometry of the universe

In physical cosmology, the shape of the universe refers to both its local and global geometry. Local geometry is defined primarily by its curvature, while the global geometry is characterised by its topology. General relativity explains how spatial curvature is constrained by gravity. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. For example; a multiply connected space like a 3 torus has everywhere zero curvature but is finite in extent, whereas a flat simply connected space is infinite in extent.

<span class="mw-page-title-main">Classical physics</span> Physics as understood pre-1900

Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the previous theories, or new theories based on the older paradigm, will often be referred to as belonging to the area of "classical physics".

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

<span class="mw-page-title-main">Effective field theory</span> Type of approximation to an underlying physical theory

In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances. Intuitively, one averages over the behavior of the underlying theory at shorter length scales to derive what is hoped to be a simplified model at longer length scales. Effective field theories typically work best when there is a large separation between length scale of interest and the length scale of the underlying dynamics. Effective field theories have found use in particle physics, statistical mechanics, condensed matter physics, general relativity, and hydrodynamics. They simplify calculations, and allow treatment of dissipation and radiation effects.

<span class="mw-page-title-main">Richard C. Tolman</span> American physicist (1881–1948)

Richard Chace Tolman was an American mathematical physicist and physical chemist who made many contributions to statistical mechanics. He also made important contributions to theoretical cosmology in the years soon after Einstein's discovery of general relativity. He was a professor of physical chemistry and mathematical physics at the California Institute of Technology (Caltech).

Asım Orhan Barut was a Turkish-American theoretical physicist.

In physics the Einstein-aether theory, also called aetheory, is the name coined in 2004 for a modification of general relativity that has a preferred reference frame and hence violates Lorentz invariance. These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether. The aether in this theory is "a Lorentz-violating vector field" unrelated to older luminiferous aether theories; the "Einstein" in the theory's name comes from its use of Einstein's general relativity equation.

<span class="mw-page-title-main">Inhomogeneous cosmology</span>

An inhomogeneous cosmology is a physical cosmological theory which, unlike the currently widely accepted cosmological concordance model, assumes that inhomogeneities in the distribution of matter across the universe affect local gravitational forces enough to skew our view of the Universe. When the universe began, matter was distributed homogeneously, but over billions of years, galaxies, clusters of galaxies, and superclusters have coalesced, and must, according to Einstein's theory of general relativity, warp the space-time around them. While the concordance model acknowledges this fact, it assumes that such inhomogeneities are not sufficient to affect large-scale averages of gravity in our observations. When two separate studies claimed in 1998-1999 that high redshift supernovae were further away than our calculations showed they should be, it was suggested that the expansion of the universe is accelerating, and dark energy, a repulsive energy inherent in space, was proposed to explain the acceleration. Dark energy has since become widely accepted, but it remains unexplained. Accordingly, some scientists continue to work on models that might not require dark energy. Inhomogeneous cosmology falls into this class.

The following outline is provided as an overview of and topical guide to black holes:

<span class="mw-page-title-main">Jürgen Ehlers</span> German physicist

Jürgen Ehlers was a German physicist who contributed to the understanding of Albert Einstein's theory of general relativity. From graduate and postgraduate work in Pascual Jordan's relativity research group at Hamburg University, he held various posts as a lecturer and, later, as a professor before joining the Max Planck Institute for Astrophysics in Munich as a director. In 1995, he became the founding director of the newly created Max Planck Institute for Gravitational Physics in Potsdam, Germany.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.

In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others. It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.

In physics, a non-relativistic spacetime is any mathematical model that fuses n–dimensional space and m–dimensional time into a single continuum other than the (3+1) model used in relativity theory.

References

  1. 3. Blanchard O., 2018- On the future of macroeconomic models, Oxford Review of Economic Policy , Volume 34, Numbers 1–2, 2018, p.p.52-53.
  2. Hartmann, Alexander K.; Weigt, Martin (2006-05-12). Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics. John Wiley & Sons. p. 104. ISBN   978-3-527-60686-3.
  3. "Ising model". nlab-pages.s3.us-east-2.amazonaws.com. Retrieved 2022-01-12.
  4. "The Ising Model". stanford.edu. Retrieved 2022-01-12.
  5. Buchert, T.; Carfora, M.; Ellis, G. F. R.; Kolb, E. W.; MacCallum, M. A. H.; Ostrowski, J. J.; Räsänen, S.; Roukema, B. F.; Andersson, L.; Coley, A. A.; Wiltshire, D. L. (2015-11-05). "Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?". Classical and Quantum Gravity. 32 (21): 215021. arXiv: 1505.07800 . Bibcode:2015CQGra..32u5021B. doi:10.1088/0264-9381/32/21/215021. hdl: 10138/310154 . ISSN   0264-9381. S2CID   51693570.