The Spekkens toy model is a conceptually simple toy hidden-variable theory introduced by Robert Spekkens in 2004, to argue in favour of the epistemic view of quantum mechanics. The model is based on a foundational principle: "If one has maximal knowledge, then for every system, at every time, the amount of knowledge one possesses about the ontic state of the system at that time must equal the amount of knowledge one lacks." [1] This is called the "knowledge balance principle". Within the bounds of this model, many phenomena typically associated with strictly quantum-mechanical effects are present. These include (but are not limited to) entanglement, noncommutativity of measurements, teleportation, interference, the no-cloning and no-broadcasting theorems, and unsharp measurements. The toy model cannot, however, reproduce quantum nonlocality and quantum contextuality, as it is a local and non-contextual hidden-variable theory.
For nearly a century, physicists and philosophers have been attempting to explain the physical meaning of quantum states. The argument is typically one between two fundamentally opposed views: the ontic view, which describes quantum states as states of physical reality, and the epistemic view, which describes quantum states as states of our incomplete knowledge about a system. Both views have had strong support over the years; notably, the ontic view was supported by Heisenberg and Schrödinger, and the epistemic view by Einstein. The majority of 20th-century quantum physics was dominated by the ontic view, and it remains the view generally accepted by physicists today. There is, however, a substantial subset of physicists who take the epistemic view. Both views have issues associated with them, as both contradict physical intuition in many cases, and neither has been conclusively proven to be the superior viewpoint.
The Spekkens toy model is designed to argue in favour of the epistemic viewpoint. It is, by construction, an epistemic model. The knowledge balance principle of the model ensures that any measurement done on a system within it gives incomplete knowledge of the system, and thus the observable states of the system are epistemic. This model also implicitly assumes that there is an ontic state which the system is in at any given time, but simply that we are unable to observe it. The model can not be used to derive quantum mechanics, as there are fundamental differences between the model and quantum theory. In particular, the model is one of local and noncontextual variables, which Bell's theorem tells us cannot ever reproduce all the predictions of quantum mechanics. The toy model does, however, reproduce a number of strange quantum effects and does so from a strictly epistemic perspective; as such, it can be interpreted as strong evidence in favour of the epistemic view.
The Spekkens toy model is based on the knowledge balance principle "the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge". [1] However, the "knowledge" one can possess about a system must be carefully defined for this principle to have any meaning. To do this, the concept of a canonical set of yes-or-no questions is defined as the minimal number of questions needed. For example, for a system with 4 states, one can ask: "Is the system in state 1?", "Is the system in state 2?" and "Is the system in state 3?", which would determine the state of the system (state 4 being the case if all three questions were answered "No."). However, one could also ask: "Is the system in either state 1 or state 2?" and "Is the system in either state 1 or state 3?", which would also uniquely determine the state and has only two questions in the set. This set of questions is not unique, however, it is clear that at least two questions (bits) are required to exactly represent one of four states. We say that for a system with 4 states, the number of questions in a canonical set is two. As such, in this case, the knowledge balance principle insists that the maximal number of questions in a canonical set that one can have answered at any given time is one, such that the amount of knowledge is equal to the amount of ignorance.
It is also assumed in the model that it is always possible to saturate the inequality, i.e. to have knowledge of the system exactly equal to that which is lacked, and thus at least two questions must be in the canonical set. Since no question is allowed to exactly specify the state of the system, the number of possible ontic states must be at least 4 (if it were less than 4, the model would be trivial, since any question that could be asked may return an answer specifying the exact state of the system, thus no question can be asked). Since a system with four states (described above) exists, it is referred to as an elementary system. The model then also assumes that every system is built out of these elementary systems, and that each subsystem of any system also obeys the knowledge balance principle.
For an elementary system, let 1 ∨ 2 represent the state of knowledge "the system is in state 1 or state 2". Under this model, there are 6 states of maximal knowledge that can be obtained: 1 ∨ 2, 1 ∨ 3, 1 ∨ 4, 2 ∨ 3, 2 ∨ 4 and 3 ∨ 4. There is also a single state less than maximal knowledge, corresponding to 1 ∨ 2 ∨ 3 ∨ 4. These can be mapped to 6 qubit states in a natural manner:
Under this mapping, it is clear that two states of knowledge in the toy theory correspond to two orthogonal states for the qubit if and only if they share no ontic states in common. This mapping also gives analogues in the toy model to quantum fidelity, compatibility, convex combinations of states and coherent superposition, and can be mapped to the Bloch sphere in the natural fashion. However, the analogy breaks down to a degree when considering coherent superposition, as one of the forms of the coherent superposition in the toy model returns a state that is orthogonal to what is expected with the corresponding superposition in the quantum model, and this can be shown to be an intrinsic difference between the two systems. This reinforces the earlier point that this model is not a restricted version of quantum mechanics, but instead a separate model that mimics quantum properties.[ citation needed ]
The only transformations on the ontic state of the system that respect the knowledge balance principle are permutations of the 4 ontic states. These map valid epistemic states to other valid epistemic states, for instance (using cycle notation to represent permutations):
Considering again the analogy between the epistemic states of this model and the qubit states on the Bloch sphere, these transformations consist of the typical allowed permutations of the 6 analogous states, as well as a set of permutations that are forbidden in the continuous qubit model. These are transformations such as (12)(3)(4), which correspond to antiunitary maps on Hilbert space. These are not allowed in a continuous model, however in this discrete system they arise as natural transformations. There is, however, an analogy to a characteristically quantum phenomenon, that no allowed transformation functions as a universal state inverter. In this case, this means that there is no single transformation S with the properties
In the theory, only reproducible measurements (measurements that cause the system after the measurement to be consistent with the results of the measurement) are considered. As such, only measurements that distinguish between valid epistemic states are allowed. For instance, we could measure whether the system is in states 1 or 2, 1 or 3, or 1 or 4, corresponding to 1 ∨ 2, 1 ∨ 3, and 1 ∨ 4. Once the measurement has been done, one's state of knowledge about the system in question is updated; specifically, if one measured the system in the state 2 ∨ 4, then the system would now be known to be in the ontic state 2 or the ontic state 4.
Before a measurement is done on a system, it has a definite ontic state, in the case of an elementary system 1, 2, 3 or 4. If the initial ontic state of a system is 1, and one measured the state of the system with respect to the {1 ∨ 3, 2 ∨ 4} basis, then one would measure the state 1 ∨ 3. Another measurement done in this basis would produce the same result. However, the underlying ontic state of the system can be changed by such a measurement, to either the state 1 or the state 3. This reflects the nature of measurement in quantum theory.
Measurements done on a system in the toy model are non-commutative, as is the case for quantum measurements. This is due to the above fact, that a measurement can change the underlying ontic state of the system. For example, if one measures a system in the state 1 ∨ 3 in the {1 ∨ 3, 2 ∨ 4} basis, then one obtains the state 1 ∨ 3 with certainty. However, if one first measures the system in the {1 ∨ 2, 3 ∨ 4} basis, then in the {1 ∨ 3, 2 ∨ 4} basis, then the final state of the system is uncertain, prior to the measurement.
The nature of measurements and of the coherent superposition in this theory also gives rise to the quantum phenomenon of interference. When two states are mixed by a coherent superposition, the result is a sampling of the ontic states from both, rather than the typical "and" or "or". This is one of the most important results of this model, as interference is often seen as evidence against the epistemic view. This model indicates that it can arise from a strictly epistemic system.
A pair of elementary systems has 16 combined ontic states, corresponding to the combinations of the numbers 1 through 4 with 1 through 4 (i.e. the system can be in the state (1,1), (1,2), etc.). The epistemic state of the system is limited by the knowledge balance principle once again. Now however, not only does it restrict the knowledge of the system as a whole, but also of both of the constituent subsystems. Two types of systems of maximal knowledge arise as a result. The first of these corresponds to having maximal knowledge of both subsystems; for example, that the first subsystem is in the state 1 ∨ 3 and the second is in the state 3 ∨ 4, meaning that the system as a whole is in one of the states (1,3), (1,4), (3,3) or (3,4). In this case, nothing is known about the correspondence between the two systems. The second is more interesting, corresponding to having no knowledge about either system individually, but having maximal knowledge about their interaction. For example, one could know that the ontic state of the system is one of (1,1), (2,2), (3,4) or (4,3). Here nothing is known about the state of either individual system, but knowledge of one system gives knowledge of the other. This corresponds to the entangling of particles in quantum theory.
It is possible to consider valid transformations on the states of a group of elementary systems, although the mathematics of such an analysis is more complicated than the case for a single system. Transformations consisting of a valid transformation on each state acting independently are always valid. In the case of a two-system model, there is also a transformation that is analogous to the c-not operator on qubits. Furthermore, within the bounds of the model it is possible to prove no-cloning and no-broadcasting theorems, reproducing a fair deal of the mechanics of quantum information theory.
The monogamy of pure entanglement also has a strong analogue within the toy model, as a group of three or more systems in which knowledge of one system would grant knowledge of the others would break the knowledge balance principle. An analogy of quantum teleportation also exists in the model, as well as a number of important quantum phenomena.
The toy model with its extensions to both continuous phase space and higher dimensional discrete phase space are coined as "epistricted theories" in Ref. [2]
Work has been done on several models of physical systems with similar characteristics, which are described in detail in the main publication [1] on this model. There are ongoing attempts to extend this model in various ways, such as van Enk's model [3] and a continuous-variable version based on Liouville mechanics. [4] The toy model has also been analyzed from the viewpoint of categorical quantum mechanics. [5]
Currently, there is work being done to reproduce quantum formalism from information-theoretic axioms. Although the model itself differs in many respects from quantum theory, it reproduces a number of effects considered to be overwhelmingly quantum. As such, the underlying principle, that quantum states are states of incomplete knowledge, may offer some hints as to how to proceed in this manner and may lend hope to those pursuing this goal.
The Einstein–Podolsky–Rosen (EPR) paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen which argues that the description of physical reality provided by quantum mechanics is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables. Resolutions of the paradox have important implications for the interpretation of quantum mechanics.
Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, local or non-local, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters.
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are putative properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
Wigner's friend is a thought experiment in theoretical quantum physics, first published by the Hungarian-American physicist Eugene Wigner in 1961, and further developed by David Deutsch in 1985. The scenario involves an indirect observation of a quantum measurement: An observer observes another observer who performs a quantum measurement on a physical system. The two observers then formulate a statement about the physical system's state after the measurement according to the laws of quantum theory. However, in the "orthodox" Copenhagen interpretation, the resulting statements of the two observers contradict each other. This reflects a seeming incompatibility of two laws in the Copenhagen interpretation: the deterministic and continuous time evolution of the state of a closed system and the nondeterministic, discontinuous collapse of the state of a system upon measurement. Wigner's friend is therefore directly linked to the measurement problem in quantum mechanics with its famous Schrödinger's cat paradox.
In quantum mechanics, wave function collapse occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. Collapse is a black box for a thermodynamically irreversible interaction with a classical environment.
Quantum superposition is a fundamental principle of quantum mechanics. In classical mechanics, things like position or momentum are always well-defined. It may not be known what they are at any given time, but that is an issue of understanding and not an issue of the physical system. A quantum system interacts in ways that can be explained with superposition of different discrete states. Measurements of quantum systems give a statistical result corresponding to any one of the possible states appearing at random.
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
In physics, Wick rotation, named after Italian physicist Gian Carlo Wick, is a method of finding a solution to a mathematical problem in Minkowski space from a solution to a related problem in Euclidean space by means of a transformation that substitutes an imaginary-number variable for a real-number variable. This transformation is also used to find solutions to problems in quantum mechanics and other areas.
In the interpretation of quantum mechanics, a local hidden-variable theory is a hidden-variable theory that satisfies the principle of locality. These are models, usually deterministic, that attempt to account for the probabilistic features of quantum mechanics via the mechanism of underlying, but inaccessible variables, with the additional requirement that distant events be statistically independent.
In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for 3 or more subsystems.
The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y).
In physics, in the area of quantum information theory, a Greenberger–Horne–Zeilinger state is a certain type of entangled quantum state that involves at least three subsystems. The four-particle version was first studied by Daniel Greenberger, Michael Horne and Anton Zeilinger in 1989, and the three-particle version was introduced by N. David Mermin in 1990. Extremely non-classical properties of the state have been observed. GHZ states for large numbers of qubits are theorized to give enhanced performance for metrology compared to other qubit superposition states.
Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being observer-dependent, that is, the state is the relation between the observer and the system. This interpretation was first delineated by Carlo Rovelli in a 1994 preprint, and has since been expanded upon by a number of theorists. It is inspired by the key idea behind special relativity, that the details of an observation depend on the reference frame of the observer, and uses some ideas from Wheeler on quantum information.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum-mechanical prediction for the system represented by the state. Knowledge of the quantum state, and the quantum mechanical rules for the system's evolution in time, exhausts all that can be known about a quantum system.
This is a glossary for the terminology applied in the foundations of quantum mechanics and quantum metaphysics, collectively called quantum philosophy, a subfield of philosophy of physics.
In physics and the philosophy of physics, quantum Bayesianism is a collection of related approaches to the interpretation of quantum mechanics, the most prominent of which is QBism. QBism is an interpretation that takes an agent's actions and experiences as the central concerns of the theory. QBism deals with common questions in the interpretation of quantum theory about the nature of wavefunction superposition, quantum measurement, and entanglement. According to QBism, many, but not all, aspects of the quantum formalism are subjective in nature. For example, in this interpretation, a quantum state is not an element of reality—instead, it represents the degrees of belief an agent has about the possible outcomes of measurements. For this reason, some philosophers of science have deemed QBism a form of anti-realism. The originators of the interpretation disagree with this characterization, proposing instead that the theory more properly aligns with a kind of realism they call "participatory realism", wherein reality consists of more than can be captured by any putative third-person account of it.
The Pusey–Barrett–Rudolph (PBR) theorem is a no-go theorem in quantum foundations due to Matthew Pusey, Jonathan Barrett, and Terry Rudolph in 2012. It has particular significance for how one may interpret the nature of the quantum state.
Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.
Robert W. Spekkens is a Canadian theoretical quantum physicist working in the fields of quantum foundations and quantum information.