Analogy

Last updated

Analogy is a comparison or correspondence between two things (or two groups of things) because of a third element that they are considered to share. [1]

Contents

In logic, it is an inference or an argument from one particular to another particular, as opposed to deduction, induction, and abduction. It is also used of where at least one of the premises, or the conclusion, is general rather than particular in nature. It has the general form A is to B as C is to D.

In a broader sense, analogical reasoning is a cognitive process of transferring some information or meaning of a particular subject (the analog, or source) onto another (the target); and also the linguistic expression corresponding to such a process. The term analogy can also refer to the relation between the source and the target themselves, which is often (though not always) a similarity, as in the biological notion of analogy.

Ernest Rutherford's model of the atom (modified by Niels Bohr) made an analogy between the atom and the Solar System. Bohr atom model English.svg
Ernest Rutherford's model of the atom (modified by Niels Bohr) made an analogy between the atom and the Solar System.

Analogy plays a significant role in human thought processes. It has been argued that analogy lies at "the core of cognition". [2]

Etymology

The English word analogy derives from the Latin analogia , itself derived from the Greek ἀναλογία, "proportion", from ana- "upon, according to" [also "again", "anew"] + logos "ratio" [also "word, speech, reckoning"]. [3] [4]

Models and theories

Analogy plays a significant role in problem solving, as well as decision making, argumentation, perception, generalization, memory, creativity, invention, prediction, emotion, explanation, conceptualization and communication. It lies behind basic tasks such as the identification of places, objects and people, for example, in face perception and facial recognition systems. Hofstadter has argued that analogy is "the core of cognition". [5]

An analogy is not a figure of speech but a kind of thought. Specific analogical language uses exemplification, comparisons, metaphors, similes, allegories, and parables, but not metonymy. Phrases like and so on, and the like, as if, and the very word like also rely on an analogical understanding by the receiver of a message including them. Analogy is important not only in ordinary language and common sense (where proverbs and idioms give many examples of its application) but also in science, philosophy, law and the humanities.

The concepts of association, comparison, correspondence, mathematical and morphological homology, homomorphism, iconicity, isomorphism, metaphor, resemblance, and similarity are closely related to analogy. In cognitive linguistics, the notion of conceptual metaphor may be equivalent to that of analogy. Analogy is also a basis for any comparative arguments as well as experiments whose results are transmitted to objects that have been not under examination (e.g., experiments on rats when results are applied to humans).

Analogy has been studied and discussed since classical antiquity by philosophers, scientists, theologists and lawyers. The last few decades have shown a renewed interest in analogy, most notably in cognitive science.

Development

Cajetan named several kinds of analogy that had been used but previously unnamed, particularly: [7]

Identity of relation

In ancient Greek the word αναλογια (analogia) originally meant proportionality, in the mathematical sense, and it was indeed sometimes translated to Latin as proportio.[ citation needed ] Analogy was understood as identity of relation between any two ordered pairs, whether of mathematical nature or not.

Analogy and abstraction are different cognitive processes, and analogy is often an easier one. This analogy is not comparing all the properties between a hand and a foot, but rather comparing the relationship between a hand and its palm to a foot and its sole. [9] While a hand and a foot have many dissimilarities, the analogy focuses on their similarity in having an inner surface.

The same notion of analogy was used in the US-based SAT college admission tests, that included "analogy questions" in the form "A is to B as C is to what?" For example, "Hand is to palm as foot is to ____?" These questions were usually given in the Aristotelian format: HAND : PALM : : FOOT : ____ While most competent English speakers will immediately give the right answer to the analogy question (sole), it is more difficult to identify and describe the exact relation that holds both between pairs such as hand and palm, and between foot and sole. This relation is not apparent in some lexical definitions of palm and sole, where the former is defined as the inner surface of the hand, and the latter as the underside of the foot.

Kant's Critique of Judgment held to this notion of analogy, arguing that there can be exactly the same relation between two completely different objects.

Shared abstraction

In several cultures,
the Sun is the source of an analogy to God. Crepuscular rays8 - NOAA.jpg
In several cultures, the Sun is the source of an analogy to God.

Greek philosophers such as Plato and Aristotle used a wider notion of analogy. They saw analogy as a shared abstraction. [10] Analogous objects did not share necessarily a relation, but also an idea, a pattern, a regularity, an attribute, an effect or a philosophy. These authors also accepted that comparisons, metaphors and "images" (allegories) could be used as arguments, and sometimes they called them analogies. Analogies should also make those abstractions easier to understand and give confidence to those who use them.

James Francis Ross in Portraying Analogy (1982), the first substantive examination of the topic since Cajetan's De Nominum Analogia,[ dubious ] demonstrated that analogy is a systematic and universal feature of natural languages, with identifiable and law-like characteristics which explain how the meanings of words in a sentence are interdependent.

Special case of induction

On the contrary, Ibn Taymiyya, [11] [12] [13] Francis Bacon and later John Stuart Mill argued that analogy is simply a special case of induction. [10] In their view analogy is an inductive inference from common known attributes to another probable common attribute, which is known about only in the source of the analogy, in the following form:

Premises
a is C, D, E, F, G
b is C, D, E, F
Conclusion
b is probably G.

Shared structure

According to Shelley (2003), the study of the coelacanth drew heavily on analogies from other fish. Latimeria chalumnae01.jpg
According to Shelley (2003), the study of the coelacanth drew heavily on analogies from other fish.

Contemporary cognitive scientists use a wide notion of analogy, extensionally close to that of Plato and Aristotle, but framed by Gentner's (1983) structure mapping theory. [14] The same idea of mapping between source and target is used by conceptual metaphor and conceptual blending theorists. Structure mapping theory concerns both psychology and computer science. According to this view, analogy depends on the mapping or alignment of the elements of source and target. The mapping takes place not only between objects, but also between relations of objects and between relations of relations. The whole mapping yields the assignment of a predicate or a relation to the target. Structure mapping theory has been applied and has found considerable confirmation in psychology. It has had reasonable success in computer science and artificial intelligence (see below). Some studies extended the approach to specific subjects, such as metaphor and similarity. [15]

Applications and types

Logic

Logicians analyze how analogical reasoning is used in arguments from analogy.

An analogy can be stated using is to and as when representing the analogous relationship between two pairs of expressions, for example, "Smile is to mouth, as wink is to eye." In the field of mathematics and logic, this can be formalized with colon notation to represent the relationships, using single colon for ratio, and double colon for equality. [16]

In the field of testing, the colon notation of ratios and equality is often borrowed, so that the example above might be rendered, "Smile : mouth :: wink : eye" and pronounced the same way. [16] [17]


Linguistics

Analogy is also a term used in the Neogrammarian school of thought as a catch-all to describe any morphological change in a language that cannot be explained merely sound change or borrowing.

Science

Analogies are mainly used as a means of creating new ideas and hypotheses, or testing them, which is called a heuristic function of analogical reasoning.

Analogical arguments can also be probative, meaning that they serve as a means of proving the rightness of particular theses and theories. This application of analogical reasoning in science is debatable. Analogy can help prove important theories, especially in those kinds of science in which logical or empirical proof is not possible such as theology, philosophy or cosmology when it relates to those areas of the cosmos (the universe) that are beyond any data-based observation and knowledge about them stems from the human insight and thinking outside the senses.

Analogy can be used in theoretical and applied sciences in the form of models or simulations which can be considered as strong indications of probable correctness. Other, much weaker, analogies may also assist in understanding and describing nuanced or key functional behaviours of systems that are otherwise difficult to grasp or prove. For instance, an analogy used in physics textbooks compares electrical circuits to hydraulic circuits. [19] Another example is the analogue ear based on electrical, electronic or mechanical devices.

Mathematics

Some types of analogies can have a precise mathematical formulation through the concept of isomorphism. In detail, this means that if two mathematical structures are of the same type, an analogy between them can be thought of as a bijection which preserves some or all of the relevant structure. For example, and are isomorphic as vector spaces, but the complex numbers, , have more structure than does: is a field as well as a vector space.

Category theory takes the idea of mathematical analogy much further with the concept of functors. Given two categories C and D, a functor f from C to D can be thought of as an analogy between C and D, because f has to map objects of C to objects of D and arrows of C to arrows of D in such a way that the structure of their respective parts is preserved. This is similar to the structure mapping theory of analogy of Dedre Gentner, because it formalises the idea of analogy as a function which makes certain conditions true.

Artificial intelligence

A computer algorithm has achieved human-level performance on multiple-choice analogy questions from the SAT test. The algorithm measures the similarity of relations between pairs of words (e.g., the similarity between the pairs HAND:PALM and FOOT:SOLE) by statistically analysing a large collection of text. It answers SAT questions by selecting the choice with the highest relational similarity. [20]

The analogical reasoning in the human mind is free of the false inferences plaguing conventional artificial intelligence models, (called systematicity). Steven Phillips and William H. Wilson [21] [22] use category theory to mathematically demonstrate how such reasoning could arise naturally by using relationships between the internal arrows that keep the internal structures of the categories rather than the mere relationships between the objects (called "representational states"). Thus, the mind, and more intelligent AIs, may use analogies between domains whose internal structures transform naturally and reject those that do not.

Keith Holyoak and Paul Thagard (1997) developed their multiconstraint theory within structure mapping theory. They defend that the "coherence" of an analogy depends on structural consistency, semantic similarity and purpose. Structural consistency is the highest when the analogy is an isomorphism, although lower levels can be used as well. Similarity demands that the mapping connects similar elements and relationships between source and target, at any level of abstraction. It is the highest when there are identical relations and when connected elements have many identical attributes. An analogy achieves its purpose if it helps solve the problem at hand. The multiconstraint theory faces some difficulties when there are multiple sources, but these can be overcome. [10] Hummel and Holyoak (2005) recast the multiconstraint theory within a neural network architecture. A problem for the multiconstraint theory arises from its concept of similarity, which, in this respect, is not obviously different from analogy itself. Computer applications demand that there are some identical attributes or relations at some level of abstraction. The model was extended (Doumas, Hummel, and Sandhofer, 2008) to learn relations from unstructured examples (providing the only current account of how symbolic representations can be learned from examples). [23]

Mark Keane and Brayshaw (1988) developed their Incremental Analogy Machine (IAM) to include working memory constraints as well as structural, semantic and pragmatic constraints, so that a subset of the base analogue is selected and mapping from base to target occurs in series. [24] [25] Empirical evidence shows that humans are better at using and creating analogies when the information is presented in an order where an item and its analogue are placed together.. [26]

Eqaan Doug and his team [27] challenged the shared structure theory and mostly its applications in computer science. They argue that there is no clear line between perception, including high-level perception, and analogical thinking. In fact, analogy occurs not only after, but also before and at the same time as high-level perception. In high-level perception, humans make representations by selecting relevant information from low-level stimuli. Perception is necessary for analogy, but analogy is also necessary for high-level perception. Chalmers et al. concludes that analogy actually is high-level perception. Forbus et al. (1998) claim that this is only a metaphor. [28] It has been argued (Morrison and Dietrich 1995) that Hofstadter's and Gentner's groups do not defend opposite views, but are instead dealing with different aspects of analogy. [29]

Anatomy

In anatomy, two anatomical structures are considered to be analogous when they serve similar functions but are not evolutionarily related, such as the legs of vertebrates and the legs of insects. Analogous structures are the result of independent evolution and should be contrasted with structures which shared an evolutionary line.

Engineering

Often a physical prototype is built to model and represent some other physical object. For example, wind tunnels are used to test scale models of wings and aircraft which are analogous to (correspond to) full-size wings and aircraft.

For example, the MONIAC (an analogue computer) used the flow of water in its pipes as an analogue to the flow of money in an economy.

Cybernetics

Where two or more biological or physical participants meet, they communicate and the stresses produced describe internal models of the participants. Pask in his conversation theory asserts an analogy that describes both similarities and differences between any pair of the participants' internal models or concepts exists.

History

In historical science, comparative historical analysis often uses the concept of analogy and analogical reasoning. Recent methods involving calculation operate on large document archives, allowing for analogical or corresponding terms from the past to be found as a response to random questions by users (e.g., Myanmar - Burma) [30] and explained. [31]

Morality

Analogical reasoning plays a very important part in morality. This may be because morality is supposed to be impartial and fair. If it is wrong to do something in a situation A, and situation B corresponds to A in all related features, then it is also wrong to perform that action in situation B. Moral particularism accepts such reasoning, instead of deduction and induction, since only the first can be used regardless of any moral principles.

Psychology

Structure mapping theory

Structure mapping, originally proposed by Dedre Gentner, is a theory in psychology that describes the psychological processes involved in reasoning through, and learning from, analogies. [32] More specifically, this theory aims to describe how familiar knowledge, or knowledge about a base domain, can be used to inform an individual's understanding of a less familiar idea, or a target domain. [33] According to this theory, individuals view their knowledge of ideas, or domains, as interconnected structures. [34] In other words, a domain is viewed as consisting of objects, their properties, and the relationships that characterise their interactions. [35] The process of analogy then involves:

  1. Recognising similar structures between the base and target domains.
  2. Finding deeper similarities by mapping other relationships of a base domain to the target domain.
  3. Cross-checking those findings against existing knowledge of the target domain. [33] [35]

In general, it has been found that people prefer analogies where the two systems correspond highly to each other (e.g. have similar relationships across the domains as opposed to just having similar objects across domains) when these people try to compare and contrast the systems. This is also known as the systematicity principle. [34]

An example that has been used to illustrate structure mapping theory comes from Gentner and Gentner (1983) and uses the base domain of flowing water and the target domain of electricity. [36] In a system of flowing water, the water is carried through pipes and the rate of water flow is determined by the pressure of the water towers or hills. This relationship corresponds to that of electricity flowing through a circuit. In a circuit, the electricity is carried through wires and the current, or rate of flow of electricity, is determined by the voltage, or electrical pressure. Given the similarity in structure, or structural alignment, between these domains, structure mapping theory would predict that relationships from one of these domains, would be inferred in the other using analogy. [35]

Children

Children do not always need prompting to make comparisons in order to learn abstract relationships. Eventually, children undergo a relational shift, after which they begin seeing similar relations across different situations instead of merely looking at matching objects. [37] This is critical in their cognitive development as continuing to focus on specific objects would reduce children's ability to learn abstract patterns and reason analogically. [37] Interestingly, some researchers have proposed that children's basic brain functions (i.e., working memory and inhibitory control) do not drive this relational shift. Instead, it is driven by their relational knowledge, such as having labels for the objects that make the relationships clearer(see previous section). [37] However, there is not enough evidence to determine whether the relational shift is actually because basic brain functions become better or relational knowledge becomes deeper. [35]

Additionally, research has identified several factors that may increase the likelihood that a child may spontaneously engage in comparison and learn an abstract relationship, without the need for prompts. [38] Comparison is more likely when the objects to be compared are close together in space and/or time, [38] are highly similar (although not so similar that they match, which interfere with identifying relationships), [35] or share common labels.

Law

In law, analogy is a method of resolving issues on which there is no previous authority. The legal use of analogy is distinguished by the need to use a legally relevant basis for drawing an analogy between two situations. It may be applied to various forms of legal authority, including statutory law and case law.

In the civil law tradition, analogy is most typically used for filling gaps in a statutory scheme. [39] In the common law tradition, it is most typically used for extending the scope of precedent. [39] The use of analogy in both traditions is broadly described by the traditional maxim Ubi eadem est ratio, ibi idem ius (where the reason is the same, the law is the same).

Teaching strategies

Analogies as defined in rhetoric are a comparison between words, but an analogy more generally can also be used to illustrate and teach. To enlighten pupils on the relations between or within certain concepts, items or phenomena, a teacher may refer to other concepts, items or phenomena that pupils are more familiar with. It may help to create or clarify one theory (or theoretical model) via the workings of another theory (or theoretical model). Thus an analogy, as used in teaching, would be comparing a topic that students are already familiar with, with a new topic that is being introduced, so that students can get a better understanding of the new topic by relating back to existing knowledge. This can be particularly helpful when the analogy serves across different disciplines: indeed, there are various teaching innovations now emerging that use sight-based analogies for teaching and research across subjects such as science and the humanities. [40] [41]

Shawn Glynn, a professor in the department of educational psychology and instructional technology at the University of Georgia, developed a theory on teaching with analogies and developed steps to explain the process of teaching with this method. The steps for teaching with analogies are as follows: Step one is introducing the new topic that is about to be taught and giving some general knowledge on the subject. Step two is reviewing the concept that the students already know to ensure they have the proper knowledge to assess the similarities between the two concepts. Step three is finding relevant features within the analogy of the two concepts. Step four is finding similarities between the two concepts so students are able to compare and contrast them in order to understand. Step five is indicating where the analogy breaks down between the two concepts. And finally, step six is drawing a conclusion about the analogy and comparing the new material with the already learned material. Typically this method is used to learn topics in science. [42]

In 1989, teacher Kerry Ruef began a program titled The Private Eye Project. It is a method of teaching that revolves around using analogies in the classroom to better explain topics. She thought of the idea to use analogies as a part of curriculum because she was observing objects once and she said, "my mind was noting what else each object reminded me of..." This led her to teach with the question, "what does [the subject or topic] remind you of?" The idea of comparing subjects and concepts led to the development of The Private Eye Project as a method of teaching. [43] The program is designed to build critical thinking skills with analogies as one of the main themes revolving around it. While Glynn focuses on using analogies to teach science, The Private Eye Project can be used for any subject including writing, math, art, social studies, and invention. It is now used by thousands of schools around the country. [44]

Religion

Catholicism

The Fourth Lateran Council of 1215 taught: For between creator and creature there can be noted no similarity so great that a greater dissimilarity cannot be seen between them. [45]

The theological exploration of this subject is called the analogia entis. The consequence of this theory is that all true statements concerning God (excluding the concrete details of Jesus' earthly life) are rough analogies, without implying any falsehood. Such analogical and true statements would include God is, God is Love, God is a consuming fire, God is near to all who call him, or God as Trinity, where being, love, fire, distance, number must be classed as analogies that allow human cognition of what is infinitely beyond positive or negative language.

The use of theological statements in syllogisms must take into account their analogical essence, in that every analogy breaks down when stretched beyond its intended meaning.

Doctrine of the Trinity

The Christian doctrine of the Trinity can be confusing for the average Christian or theist. Because of this, the use of analogies to understand the Trinity is very common. The Trinity is a combination of the words “tri,” meaning “three,” and “unity,” meaning “one.” The “Threeness” refers to the persons of the Trinity, while the “Oneness” refers to substance or being. [46] Many analogies have come out of this doctrine, however, as previously stated, a lot of analogies fall on their face when thoroughly scrutinized. Examples of these are the analogies that state that the Trinity is like water and its different states (solid, liquid, gas) or like an egg with its different parts (shell, yolk, and egg white). However, these analogies, under further examination, teach the heresies of modalism (water states) and partialism (parts of egg), which are contrary to the Christian understanding of the Trinity. [47]

More apt analogies do exist. The analogy of notes of a chord, say C major, is a sufficient analogy for the Trinity. The notes C, E, and G individually fill the whole of the “heard” space, but when all notes come together, we have a homogenized sound within the same space with distinctive, equal notes. [48] One more analogy used is one that uses the mythological dog, Cerberus, that guards the gates of Hades. While the dog itself is a single organism—speaking to its substance—Cerberus has different centers of awareness due to its three heads, each of which has the same dog nature. [49]

Islam

Islamic jurisprudence makes ample use of analogy as a means of making conclusions from outside sources of law. The bounds and rules employed to make analogical deduction vary greatly between madhhabs and to a lesser extent individual scholars. It is nonetheless a generally accepted source of law within jurisprudential epistemology, with the chief opposition to it forming the dhahiri (ostensiblist) school.

See also

Notes

  1. The Oxford Companion to the English Language$ The Oxford Companion to the English Language (2 ed.). Oxford University Press. 2018. Retrieved 11 June 2023.
  2. Hofstadter, Douglas. "Analogy as the Core of Cognition". Language, Cognition, and Computation Seminar Series. MIT. Retrieved 13 June 2023.
  3. Henry George Liddell, Robert Scott, A Greek-English Lexicon, revised and augmented throughout by Sir Henry Stuart Jones, with the assistance of Roderick McKenzie (Oxford: Clarendon Press, 1940) on Perseus Digital Library. "Henry George Liddell, Robert Scott, A Greek-English Lexicon, ἀναλογ-ία". Archived from the original on 2016-04-23. Retrieved 2018-05-21.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. analogy, Online Etymology Dictionary. Archived 2010-03-24 at the Wayback Machine
  5. Hofstadter, Douglas. "Analogy as the Core of Cognition". Language, Cognition, and Computation Seminar Series. MIT. Retrieved 13 June 2023.
  6. Hesse, Mary (October 1965). "Aristotle's Logic of Analogy". The Philosophical Quarterly. 15 (61): 328–340. doi:10.2307/2218258. JSTOR   2218258 . Retrieved 11 June 2023.
  7. Strumia, Alberto. "Analogy". Interdisciplinary Encyclogpedia of Religion and Science. Pontifical University of the Holy Cross. Retrieved 11 June 2023.
  8. Tabaczek, Mariusz (November 2018). "htA Trace of Similarity within Even Greater Dissimilarity". Forum Philosophicum. 23 (1): 95–132. doi: 10.5840/forphil20182314 . Retrieved 11 June 2023.
  9. "Journal of Statistics Education, V11N2: Martin". Archived from the original on 2013-03-07. Retrieved 2012-12-10., Michael A. Martin, The Use of Analogies and Heuristics in Teaching Introductory Statistical Methods
  10. 1 2 3 Shelley 2003
  11. Hallaq, Wael B. (1985–1986). "The Logic of Legal Reasoning in Religious and Non-Religious Cultures: The Case of Islamic Law and the Common Law". Cleveland State Law Review. 34: 79–96 [93–5].
  12. Ruth Mas (1998). "Qiyas: A Study in Islamic Logic" (PDF). Folia Orientalia. 34: 113–128. ISSN   0015-5675. Archived (PDF) from the original on 2008-07-08.
  13. John F. Sowa; Arun K. Majumdar (2003). "Analogical reasoning". Conceptual Structures for Knowledge Creation and Communication, Proceedings of ICCS 2003. Berlin: Springer-Verlag. Archived from the original on 2010-04-05., pp. 16–36
  14. See Dedre Gentner et al. 2001
  15. See Gentner et al. 2001 and Gentner's publication page Archived 2010-06-14 at the Wayback Machine .
  16. 1 2 Research and Education Association (June 1994). "2. Analogies". In Fogiel, M (ed.). Verbal Tutor for the SAT. Piscataway, New Jersey: Research & Education Assoc. pp. 84–86. ISBN   978-0-87891-963-5. OCLC   32747316 . Retrieved 25 January 2018.
  17. Schwartz, Linda; Heidrich, Stanley H.; Heidrich, Delana S. (1 January 2007). Power Practice: Analogies and Idioms, eBook. Huntington Beach, Calif.: Creative Teaching Press. pp. 4–. ISBN   978-1-59198-953-0. OCLC   232131611 . Retrieved 25 January 2018.
  18. "underwhelm - definition of underwhelm in English | Oxford Dictionaries". Oxford Dictionaries | English. Archived from the original on 2016-08-16. Retrieved 2017-04-07.
  19. Going with the flow: Using analogies to explain electric circuits. Mark D. Walker and David Garlovsky. School Science Review, 97, no. 361 (2016): 51-58.https://www.academia.edu/33380466/Going_with_the_flow_Using_analogies_to_explain_electric_circuits_Going_with_the_flow_Using_analogies_to_explain_electric_circuits
  20. Turney 2006
  21. Phillips, Steven; Wilson, William H. (July 2010). "Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition". PLOS Computational Biology. 6 (7): e1000858. Bibcode:2010PLSCB...6E0858P. doi: 10.1371/journal.pcbi.1000858 . PMC   2908697 . PMID   20661306.
  22. Phillips, Steven; Wilson, William H. (August 2011). "Categorial Compositionality II: Universal Constructions and a General Theory of (Quasi-)Systematicity in Human Cognition". PLOS Computational Biology. 7 (8): e1002102. Bibcode:2011PLSCB...7E2102P. doi: 10.1371/journal.pcbi.1002102 . PMC   3154512 . PMID   21857816.
  23. Doumas, Hummel, and Sandhofer, 2008
  24. Keane, M.T. and Brayshaw, M. (1988). The Incremental Analogical Machine: a computational model of analogy. In D. H. Sleeman (Ed). European working session on learning. (pp.53–62). London: Pitman.
  25. Keane, M.T. Ledgeway; Duff, S (1994). "Constraints on analogical mapping: a comparison of three models" (PDF). Cognitive Science. 18 (3): 387–438. doi: 10.1016/0364-0213(94)90015-9 .
  26. Keane, M.T. (1997). "What makes an analogy difficult? The effects of order and causal structure in analogical mapping". Journal of Experimental Psychology: Learning, Memory, and Cognition. 23 (4): 946–967. doi:10.1037/0278-7393.23.4.946. PMID   9231438.
  27. See Chalmers et al. 1991
  28. Forbus et al., 1998
  29. Morrison and Dietrich, 1995
  30. Zhang, Y., Jatowt, A., Bhowmick, S., & Tanaka, K. (2015, July). Omnia mutantur, nihil interit: Connecting past with present by finding corresponding terms across time. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 645-655). pdf
  31. Zhang, Yating, Adam Jatowt, and Katsumi Tanaka. "Towards understanding word embeddings: Automatically explaining similarity of terms." In 2016 IEEE international conference on big data (big data), pp. 823-832. IEEE, 2016. pdf
  32. Gentner, Dedre (April 1983). "Structure-Mapping: A Theoretical Framework for Analogy*". Cognitive Science. 7 (2): 155–170. doi: 10.1207/s15516709cog0702_3 . S2CID   5371492.
  33. 1 2 Gentner, Dedre (2006), "Analogical Reasoning, Psychology of", Encyclopedia of Cognitive Science, American Cancer Society, doi:10.1002/0470018860.s00473, ISBN   978-0-470-01886-6 , retrieved 2020-12-09
  34. 1 2 Gentner, D.; Gunn, V. (June 2001). "Structural alignment facilitates the noticing of differences". Memory & Cognition. 29 (4): 565–577. doi: 10.3758/bf03200458 . ISSN   0090-502X. PMID   11504005. S2CID   1745309.
  35. 1 2 3 4 5 Gentner, Dedre; Smith, Linsey A. (2013-03-11). Reisberg, Daniel (ed.). "Analogical Learning and Reasoning". The Oxford Handbook of Cognitive Psychology. doi:10.1093/oxfordhb/9780195376746.001.0001. ISBN   9780195376746 . Retrieved 2020-12-09.
  36. Gentner, Dedre; Stevens, Albert L. (2014-01-14). Mental Models. Psychology Press. doi:10.4324/9781315802725. ISBN   978-1-315-80272-5.
  37. 1 2 3 Hespos, Susan J.; Anderson, Erin; Gentner, Dedre (2020), Childers, Jane B. (ed.), "Structure-Mapping Processes Enable Infants' Learning Across Domains Including Language", Language and Concept Acquisition from Infancy Through Childhood: Learning from Multiple Exemplars, Cham: Springer International Publishing, pp. 79–104, doi:10.1007/978-3-030-35594-4_5, ISBN   978-3-030-35594-4, S2CID   213450124 , retrieved 2020-12-09
  38. 1 2 Gentner, Dedre; Hoyos, Christian (2017). "Analogy and Abstraction". Topics in Cognitive Science. 9 (3): 672–693. doi: 10.1111/tops.12278 . ISSN   1756-8765. PMID   28621480.
  39. 1 2 Langenbucher, Katja (1998). "Argument by Analogy In European Law". The Cambridge Law Journal. 57 (3): 481–521. doi:10.1017/S0008197398003031.
  40. Mario Petrucci. "Crosstalk, Mutation, Chaos: bridge-building between the sciences and literary studies using Visual Analogy". Archived from the original on 2013-09-25.{{cite journal}}: Cite journal requires |journal= (help)
  41. Mario Petrucci. "Scientific Visualizations used as visual analogies in other disciplines".{{cite journal}}: Cite journal requires |journal= (help)
  42. Glynn, Shawn M. Teaching with Analogies. 2008.
  43. Johnson, Katie. Educational Leadership: Exploring the World with the Private Eye. September 1995. 16 October 2013 .
  44. The Private Eye Project. The Private Eye Project. 2013.
  45. Fourth Lateran Council of 1215
  46. Copan, Paul (2017). Dictionary of Christianity and Science. Zondervan. p. 664. ISBN   978-0-310-49605-2.
  47. Copan, Paul (2017). Dictionary of Christianity and Science. Zondervan. p. 664. ISBN   978-0-310-49605-2.
  48. Begbie, Jeremy (2000). Hearing God in C Major. Baker.
  49. Moreland, J. P.; Craig, William L. (2003). Philosophical Foundations for the Christian Worldview. Downers Grove, IL: IVP Academic.

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

Cognitive psychology is the scientific study of mental processes such as attention, language use, memory, perception, problem solving, creativity, and reasoning.

<span class="mw-page-title-main">Concept</span> Mental representation or an abstract object

A concept is defined as an abstract idea. It is understood to be a fundamental building block underlying principles, thoughts and beliefs. Concepts play an important role in all aspects of cognition. As such, concepts are studied within such disciplines as linguistics, psychology, and philosophy, and these disciplines are interested in the logical and psychological structure of concepts, and how they are put together to form thoughts and sentences. The study of concepts has served as an important flagship of an emerging interdisciplinary approach, cognitive science.

<span class="mw-page-title-main">Mental model</span> Way of representing external reality within ones mind

A mental model is an internal representation (model) of external reality: that is, a way of representing reality within one's mind. Such models are hypothesized to play a major role in cognition, reasoning and decision-making. The term for this concept was coined in 1943 by Kenneth Craik, who suggested that the mind constructs "small-scale models" of reality that it uses to anticipate events.

Similarity refers to the psychological degree of identity of two mental representations. It is fundamental to human cognition since it provides the basis for categorization of entities into kinds and for various other cognitive processes. It underpins our ability to interact with unknown entities by predicting how they will behave based on their similarity to entities we are familiar with. Research in cognitive psychology has taken a number of approaches to the concept of similarity. Each of them is related to a particular set of assumptions about knowledge representation.

Dedre Dariel Gentner is an American cognitive and developmental psychologist. She is the Alice Gabriel Twight Professor of Psychology at Northwestern University, and a leading researcher in the study of analogical reasoning.

Boicho Kokinov was an associate professor in cognitive science and computer science at the New Bulgarian University and the director of the Central and East European Center for Cognitive Science.

In artificial intelligence and cognitive science, the structure mapping engine (SME) is an implementation in software of an algorithm for analogical matching based on the psychological theory of Dedre Gentner. The basis of Gentner's structure-mapping idea is that an analogy is a mapping of knowledge from one domain into another. The structure-mapping engine is a computer simulation of the analogy and similarity comparisons.

<span class="mw-page-title-main">Analogical models</span> Relation of types of systems with corresponding dynamics

Analogical models are a method of representing a phenomenon of the world, often called the "target system" by another, more understandable or analysable system. They are also called dynamical analogies.

<span class="mw-page-title-main">Keith Holyoak</span> American psychologist and poet (born 1950)

Keith James Holyoak is a Canadian–American researcher in cognitive psychology and cognitive science, working on human thinking and reasoning. Holyoak's work focuses on the role of analogy in thinking. His work showed how analogy can be used to enhance learning of new abstract concepts by both children and adults, as well as how reasoning breaks down in cases of brain damage.

Concept learning, also known as category learning, concept attainment, and concept formation, is defined by Bruner, Goodnow, & Austin (1967) as "the search for and listing of attributes that can be used to distinguish exemplars from non exemplars of various categories". More simply put, concepts are the mental categories that help us classify objects, events, or ideas, building on the understanding that each object, event, or idea has a set of common relevant features. Thus, concept learning is a strategy which requires a learner to compare and contrast groups or categories that contain concept-relevant features with groups or categories that do not contain concept-relevant features.

<span class="mw-page-title-main">Computational creativity</span> Multidisciplinary endeavour

Computational creativity is a multidisciplinary endeavour that is located at the intersection of the fields of artificial intelligence, cognitive psychology, philosophy, and the arts.

The psychology of reasoning is the study of how people reason, often broadly defined as the process of drawing conclusions to inform how people solve problems and make decisions. It overlaps with psychology, philosophy, linguistics, cognitive science, artificial intelligence, logic, and probability theory.

Neo-Piagetian theories of cognitive development criticize and build upon Jean Piaget's theory of cognitive development.

Conceptual change is the process whereby concepts and relationships between them change over the course of an individual person's lifetime or over the course of history. Research in four different fields – cognitive psychology, cognitive developmental psychology, science education, and history and philosophy of science - has sought to understand this process. Indeed, the convergence of these four fields, in their effort to understand how concepts change in content and organization, has led to the emergence of an interdisciplinary sub-field in its own right. This sub-field is referred to as "conceptual change" research.

<span class="mw-page-title-main">Embodied cognition</span> Interdisciplinary theory

Embodied cognition is the concept suggesting that many features of cognition are shaped by the state and capacities of the organism. The cognitive features include a wide spectrum of cognitive functions, such as perception biases, memory recall, comprehension and high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built the functional structure of organism's brain and body.

Argument from analogy is a special type of inductive argument, where perceived similarities are used as a basis to infer some further similarity that has not been observed yet. Analogical reasoning is one of the most common methods by which human beings try to understand the world and make decisions. When a person has a bad experience with a product and decides not to buy anything further from the producer, this is often a case of analogical reasoning since the two products share a maker and are therefore both perceived as "bad". It is also the basis of much of science; for instance, experiments on laboratory rats are based on the fact that some physiological similarities between rats and humans implies some further similarity.

The question whether the use of language influences spatial cognition is closely related to theories of linguistic relativity—also known as the Sapir-Whorf hypothesis—which states that the structure of a language affects cognitive processes of the speaker. Debates about this topic are mainly focused on the extent to which language influences spatial cognition or if it does at all. Research also concerns differences between perspectives on spatial relations across cultures, what these imply, and the exploration of potentially partaking cognitive mechanisms.

Structure-mapping theory is a theory of analogical reasoning, developed by Dedre Gentner, and for which she was awarded the 2016 David E. Rumelhart Prize for Contributions to the Theoretical Foundations of Human Cognition.

Intuitive statistics, or folk statistics, is the cognitive phenomenon where organisms use data to make generalizations and predictions about the world. This can be a small amount of sample data or training instances, which in turn contribute to inductive inferences about either population-level properties, future data, or both. Inferences can involve revising hypotheses, or beliefs, in light of probabilistic data that inform and motivate future predictions. The informal tendency for cognitive animals to intuitively generate statistical inferences, when formalized with certain axioms of probability theory, constitutes statistics as an academic discipline.

References