Analog ear

Last updated

An analog ear or analog cochlea is a model of the ear or of the cochlea (in the inner ear) based on an electrical, electronic or mechanical analog. An analog ear is commonly described as an interconnection of electrical elements such as resistors, capacitors, and inductors; sometimes transformers and active amplifiers are included.

Contents

Ear background

Anatomy of the human ear. (The length of the auditory canal is exaggerated for viewing purposes.)
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Brown is outer ear.
Red is middle ear.
Purple is inner ear. Anatomy of the Human Ear en.svg
Anatomy of the human ear. (The length of the auditory canal is exaggerated for viewing purposes.)
  Brown is outer ear.
  Red is middle ear.
  Purple is inner ear.

The ear of the typical mammal consists of three parts. The outer ear collects sounds like a horn and guides them to the eardrum. Vibrations of the drum are conveyed to the inner ear via a system of bones called ossicles. These leverage the larger motions of the eardrum to the smaller vibrations of the oval window. This window connects to the cochlea which is a long dual channel arrangement consisting of two channels separated by the basilar membrane. The structure, about 36 mm in length, is coiled to conserve space. The oval window introduces sounds to the upper channel. The lower channel has a round window but this is not driven by the bones of the middle ear. The far end of the structure has a hole between the two channels called the helicotrema that equalizes slowly varying pressures in the two channels. A series of sensory hair cells along the basilar membrane respond to send neural pulses towards the brain.

Ear modeling

Models for the ear of a direct kind have been created, most notably by Nobel Laureate Georg von Békésy. He used glass slides, razor blades, and an elastic membrane to represent the helicotrema. He could measure vibrations along the basilar membrane in response to different excitations frequencies. He found that the pattern of displacements for given frequency sine wave along the basilar membrane rose somewhat gradually to a peak and thereafter fell. High frequencies favored shorter distances from the oval window than did lower ones. Frequency values approximate a logarithmic distribution with distance. [lower-alpha 1]

Mechanical and electrical analogs

Early mechanical and electrical analog ears were recounted in the 1954 book Analog Methods in Computation and Simulation: [3]

...Barton and Browning [4] also simulated the characteristics of hearing over the range of an octave by making use of 13 pendulum resonators. A modern theory of the dynamics of the cochlea, accounting for the hydrodynamics of the cochlear ducts and the dynamics of the basilar membrane, has been proposed [5] and an electrical analogy developed [6] to check the theory. The "analog ear" is a transmission line made up of 175 section s, each section consisting of 2 inductances (to represent the mass of a slice of fluid and that of the duct) and 4 condensers (to represent duct stiffness).

Walter W. Soroka

A direct (mechanical) model uses the variables of air and water pressure, fluid velocity and viscosity, and displacement. An electrical analog model uses a different set of variables, namely, voltage and current. The outer and middle parts of the ear can be represented with a collection of coils, capacitors, and an ideal transformer to represent the leveraging effect of the ossicles. This circuit terminates with a capacitor representing the oval window. From there, the two channels are represented with a sequence of inductors and resistors for fluid flow within each channel with the two channels joined with a sequence of series resonant RLC circuits. Voltages across capacitances represent basilar membrane displacements. Element values along the cochlea are tapered in a logarithmic fashion to represent lowering frequency responses with distance.

The pattern of voltages along the basilar membrane can be viewed on an oscilloscope. Average values can be obtained with rectification and shown as patterns using a high speed commutator. The analog ear shows patterns that closely follow those observed by Georg von Békésy on his more direct model.

The first relatively complete model was constructed in the early 1960s at the University of Arizona by two graduate students and their faculty mentor with support from the newly established Air Force Bionics program. This work was first summarized in a report: "An Electronic Analog of the Ear", Technical Documentary Report No. AMRL-TDR-1963-60, June 1963, Biophysics Laboratory, 6570-th Aerospace Medical Research Laboratories, Aerospace Medical Division, Air Force Systems Command, by E. Glaesser, W. F. Caldwell, and J. L. Stewart. [7] The report contains an extensive list of references. The work was also reported at Bionics symposia.

John L. Stewart and Covox

Unlike models based on a series of active filters or represented with digital equations, an analog ear can incorporate nonlinearities that represent nonlinear actions of the basilar membrane, perhaps caused by asymmetric motions of sensory cells resulting in asymmetric motions of the basilar membrane. Difference frequencies could be generated as are observed in the human. Some difference frequencies originating in the cochlea can be observed in the outer ear.

Neural signals responding to motions of the basilar membrane show responses in one direction as in rectification. At all but low frequencies, the neural measure averages over multiple cycles to give the equivalent of rectification followed by averaging (low-pass filtering). Over the entire cochlea, response shows as a pattern that varies more slowly that the applied frequency but that does follow the envelope of the applied signal. Each group of cells can give rise to a semi-periodic wave that can be analyzed by neurons in the brain. The total pattern that arises from a sound can thus be thought of as a two-dimensional pattern in time with one axis being the distance along the basilar membrane and the other being distance along some sequence of neurons. These patterns, varying at rates less than lower audio frequencies, have shapes that can be identified much like patterns in vision. The concept of the "neural analyzer" as an extension of cochlear patterns is discussed in U.S. Patent 3,387,093 , "Speech Bandwidth Compression System", June 4, 1968 (filed in 1964).

It was found that the analog ear with its asymmetric overlapping bands was more reliable in identifying speech sounds than is a conventional frequency spectrum. The second formant is the most significant single measure. Speech sounds of interest include whispered and clipped speech. [lower-alpha 2]

Applications were made to animals and insects with appropriate ear models. [9] Another study using the analog ear was "Simulating Mechanisms in Animal Echoranging", John L. Stewart and James M. Kasson. [10]

Many reports, articles, and patents followed the research as cited in the reports listed here. The last full report employed a relatively early version of a computer program written in time-shared BASIC. [lower-alpha 3]

Stewart also self-published several books, doing business as Santa Rita Technology, and later as Covox, including The Analog Ear Story and The Analog Ear–brain System in 1964, and The Bionic Ear in 1979. [12]

The research resulting from analog ear studies fueled the creation of special sounds for use in repelling birds and other pests. Sounds were synthesized to follow natural bird calls but were of a switching kind. The concept is similar to the use of a babble of human voices for jamming another person's communications. The "Av-Alarm" was the principal product. It was also adapted to the transonic and ultrasonic regions with a device called "Transonic".

The research also led to development of an early speech word recognizer that operated with 8-bit computers as well as later ones based on 16-bit processors. The product line was developed by Covox, Inc. with product names of "Speech Thing" and "Voice Master".

A number of U.S. (and foreign) patents on topics related to Stewart's analog ear were granted. In the order of filing dates starting in 1962, numbers are U.S. Patent 3,294,909 , U.S. Patent 3,325,597 , U.S. Patent 3,387,093 , U.S. Patent 3,432,618 , U.S. Patent 3,378,700 , U.S. Patent 3,483,325 , U.S. Patent 3,459,034 , U.S. Patent 3,543,138 , and U.S. Patent 3,510,588 .

Analog VLSI cochlea models

Several groups have built analog VLSI hearing chips in recent decades. [13]

Notes

  1. Detailed discussions of the direct models by von Békésy will be found in his book, "Experiments in Hearing". [1] Also see his article and others in S. S. Stevens, "Handbook of Experimental Psychology". [2] This handbook is singled out as a major source of information on speech and hearing, word recognition, and other topics as well as data on the human ear.
  2. See "Speech Processing with A Cochlear-Neural Analog, John L. Stewart. [8] An article published in the journal Behavioral Science studied constraints to sensory discrimination imposed by two kinds of neural noise. Considerable information on speech patterns and recognition is reported by a number of different authors in the Handbook of Experimental Psychology [2] referred to above.
  3. See "A Theory and Physical Model for Cochlear Mechanics", John L. Stewart. [11] Parameters of the analog ear and patterns obtained with the computer program are shown. Patterns and parameters given in this report are sufficient to reproduce analog ears.

Related Research Articles

<span class="mw-page-title-main">Inner ear</span> Innermost part of the vertebrate ear

The inner ear is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts:

<span class="mw-page-title-main">Cochlea</span> Snail-shaped part of inner ear involved in hearing

The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus. A core component of the cochlea is the Organ of Corti, the sensory organ of hearing, which is distributed along the partition separating the fluid chambers in the coiled tapered tube of the cochlea.

<span class="mw-page-title-main">Basilar membrane</span> Stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes

The basilar membrane is a stiff structural element within the cochlea of the inner ear which separates two liquid-filled tubes that run along the coil of the cochlea, the scala media and the scala tympani. The basilar membrane moves up and down in response to incoming sound waves, which are converted to traveling waves on the basilar membrane.

<span class="mw-page-title-main">Organ of Corti</span> Receptor organ for hearing

The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian cochlea. This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. Transduction occurs through vibrations of structures in the inner ear causing displacement of cochlear fluid and movement of hair cells at the organ of Corti to produce electrochemical signals.

<span class="mw-page-title-main">Georg von Békésy</span> Hungarian-American biophysicist

Georg von Békésy was a Hungarian-American biophysicist.

<span class="mw-page-title-main">Auditory system</span> Sensory system used for hearing

The auditory system is the sensory system for the sense of hearing. It includes both the sensory organs and the auditory parts of the sensory system.

<span class="mw-page-title-main">Hair cell</span> Auditory sensory receptor nerve cells

Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment.

<span class="mw-page-title-main">Sensorineural hearing loss</span> Hearing loss caused by an inner ear or vestibulocochlear nerve defect

Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear or sensory organ or the vestibulocochlear nerve. SNHL accounts for about 90% of reported hearing loss. SNHL is usually permanent and can be mild, moderate, severe, profound, or total. Various other descriptors can be used depending on the shape of the audiogram, such as high frequency, low frequency, U-shaped, notched, peaked, or flat.

In physiology, tonotopy is the spatial arrangement of where sounds of different frequency are processed in the brain. Tones close to each other in terms of frequency are represented in topologically neighbouring regions in the brain. Tonotopic maps are a particular case of topographic organization, similar to retinotopy in the visual system.

Audiometry is a branch of audiology and the science of measuring hearing acuity for variations in sound intensity and pitch and for tonal purity, involving thresholds and differing frequencies. Typically, audiometric tests determine a subject's hearing levels with the help of an audiometer, but may also measure ability to discriminate between different sound intensities, recognize pitch, or distinguish speech from background noise. Acoustic reflex and otoacoustic emissions may also be measured. Results of audiometric tests are used to diagnose hearing loss or diseases of the ear, and often make use of an audiogram.

In audiology and psychoacoustics the concept of critical bands, introduced by Harvey Fletcher in 1933 and refined in 1940, describes the frequency bandwidth of the "auditory filter" created by the cochlea, the sense organ of hearing within the inner ear. Roughly, the critical band is the band of audio frequencies within which a second tone will interfere with the perception of the first tone by auditory masking.

Graeme Milbourne Clark AC is an Australian Professor of Otolaryngology at the University of Melbourne. His work in ENT surgery, electronics and speech science contributed towards the development of the multiple-channel cochlear implant. His invention was later produced and sold by Cochlear Limited.

The temporal theory of hearing, also called frequency theory or timing theory, states that human perception of sound depends on temporal patterns with which neurons respond to sound in the cochlea. Therefore, in this theory, the pitch of a pure tone is determined by the period of neuron firing patterns—either of single neurons, or groups as described by the volley theory. Temporal theory competes with the place theory of hearing, which instead states that pitch is signaled according to the locations of vibrations along the basilar membrane.

The Greenwood function correlates the position of the hair cells in the inner ear to the frequencies that stimulate their corresponding auditory neurons. Empirically derived in 1961 by Donald D. Greenwood, the relationship has shown to be constant throughout mammalian species when scaled to the appropriate cochlear spiral lengths and audible frequency ranges. Moreover, the Greenwood function provides the mathematical basis for cochlear implant surgical electrode array placement within the cochlea.

Computational auditory scene analysis (CASA) is the study of auditory scene analysis by computational means. In essence, CASA systems are "machine listening" systems that aim to separate mixtures of sound sources in the same way that human listeners do. CASA differs from the field of blind signal separation in that it is based on the mechanisms of the human auditory system, and thus uses no more than two microphone recordings of an acoustic environment. It is related to the cocktail party problem.

<span class="mw-page-title-main">Hearing</span> Sensory perception of sound by living organisms

Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory science.

The cochlear amplifier is a positive feedback mechanism within the cochlea that provides acute sensitivity in the mammalian auditory system. The main component of the cochlear amplifier is the outer hair cell (OHC) which increases the amplitude and frequency selectivity of sound vibrations using electromechanical feedback.

Electrocochleography is a technique of recording electrical potentials generated in the inner ear and auditory nerve in response to sound stimulation, using an electrode placed in the ear canal or tympanic membrane. The test is performed by an otologist or audiologist with specialized training, and is used for detection of elevated inner ear pressure or for the testing and monitoring of inner ear and auditory nerve function during surgery.

Bone-conduction auditory brainstem response or BCABR is a type of auditory evoked response that records neural response from EEG with stimulus transmitted through bone conduction.

Cochlea is Latin for “snail, shell or screw” and originates from the Greek word κοχλίας kokhlias. The modern definition, the auditory portion of the inner ear, originated in the late 17th century. Within the mammalian cochlea exists the organ of Corti, which contains hair cells that are responsible for translating the vibrations it receives from surrounding fluid-filled ducts into electrical impulses that are sent to the brain to process sound.

References

  1. Von Békésy, Georg (1960). Experiments in Hearing. McGraw-Hill.
  2. 1 2 Stevens, Stanley Smith (1951). Handbook of Experimental Psychology. Wiley. ISBN   9780471823681.
  3. Karplus, Walter J.; Soroka, Walter W. (1959). Analog methods: computation and simulation. McGraw-Hill.
  4. Barton, E.H.; Browning, H.M. (1919). "XI. The resonance theory of audition subjected to experiments". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 38 (223): 164–173. doi:10.1080/14786440708635936.
  5. Peterson, L. C.; Bogert, B. P. (1950). "A Dynamical Theory of the Cochlea". The Journal of the Acoustical Society of America. 22 (1): 84. Bibcode:1950ASAJ...22...84P. doi:10.1121/1.1917149.
  6. Bogert, B. P. (1950). "A Network to Represent the Inner Ear" (PDF). Bell Laboratories Record . 28 (11): 481–485. ISSN   0005-8564.
  7. Glaesser, E.; Caldwell, W. F.; Stewart, J. L. (1963). "An electronic analog of the ear (AMRL-TDR-63-60)". doi:10.1037/e428572004-001. Archived from the original on September 26, 2019.{{cite journal}}: Cite journal requires |journal= (help)
  8. Stewart, JL (1966). "Speech processing with a cochlear-neural analog (AMRL-TR-66-229)". Amrl-Tr. Aerospace Medical Research Laboratories (U.s.). Aerospace Medical Research Laboratories (U.S.): 1–140. PMID   5298146.
  9. Lucas, Robert L; Stewart, John L (1966). Aural systems simulation for birds and insects (AFAL-TR-66-12). Air Force Avionics Laboratory, Research and Technology Division, Air Force Systems Command. OCLC   39343194.
  10. Kasson, James M.; Stewart, John L. (1969). Simulating Mechanisms in Animal Echoranging (AMRL-TR-1968-194) (Report). Armored Medical Research Laboratory Technical report. OCLC   831494678.[ dead link ]
  11. Stewart, John L (1972). "A Theory and Physical Model for Cochlear Mechanics". Acta Oto-Laryngologica. 73 (Supp294).
  12. Stewart, John L (1979). The Bionic Ear. Covox.
  13. "VLSI cochlea analog – Google Scholar" . Retrieved 2014-04-05.