This article needs additional citations for verification .(May 2023) |
A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.
In optics, high-pass and low-pass may have different meanings, depending on whether referring to the frequency or wavelength of light, since these variables are inversely related. High-pass frequency filters would act as low-pass wavelength filters, and vice versa. For this reason, it is a good practice to refer to wavelength filters as short-pass and long-pass to avoid confusion, which would correspond to high-pass and low-pass frequencies. [1]
Low-pass filters exist in many different forms, including electronic circuits such as a hiss filter used in audio, anti-aliasing filters for conditioning signals before analog-to-digital conversion, digital filters for smoothing sets of data, acoustic barriers, blurring of images, and so on. The moving average operation used in fields such as finance is a particular kind of low-pass filter and can be analyzed with the same signal processing techniques as are used for other low-pass filters. Low-pass filters provide a smoother form of a signal, removing the short-term fluctuations and leaving the longer-term trend.
Filter designers will often use the low-pass form as a prototype filter. That is a filter with unity bandwidth and impedance. The desired filter is obtained from the prototype by scaling for the desired bandwidth and impedance and transforming into the desired bandform (that is, low-pass, high-pass, band-pass or band-stop).
Examples of low-pass filters occur in acoustics, optics and electronics.
A stiff physical barrier tends to reflect higher sound frequencies, acting as an acoustic low-pass filter for transmitting sound. When music is playing in another room, the low notes are easily heard, while the high notes are attenuated.
An optical filter with the same function can correctly be called a low-pass filter, but conventionally is called a longpass filter (low frequency is long wavelength), to avoid confusion. [1]
In an electronic low-pass RC filter for voltage signals, high frequencies in the input signal are attenuated, but the filter has little attenuation below the cutoff frequency determined by its RC time constant. For current signals, a similar circuit, using a resistor and capacitor in parallel, works in a similar manner. (See current divider discussed in more detail below.)
Electronic low-pass filters are used on inputs to subwoofers and other types of loudspeakers, to block high pitches that they cannot efficiently reproduce. Radio transmitters use low-pass filters to block harmonic emissions that might interfere with other communications. The tone knob on many electric guitars is a low-pass filter used to reduce the amount of treble in the sound. An integrator is another time constant low-pass filter. [2]
Telephone lines fitted with DSL splitters use low-pass filters to separate DSL from POTS signals (and high-pass vice versa), which share the same pair of wires (transmission channel). [3] [4]
Low-pass filters also play a significant role in the sculpting of sound created by analogue and virtual analogue synthesisers. See subtractive synthesis.
A low-pass filter is used as an anti-aliasing filter before sampling and for reconstruction in digital-to-analog conversion.
An ideal low-pass filter completely eliminates all frequencies above the cutoff frequency while passing those below unchanged; its frequency response is a rectangular function and is a brick-wall filter. The transition region present in practical filters does not exist in an ideal filter. An ideal low-pass filter can be realized mathematically (theoretically) by multiplying a signal by the rectangular function in the frequency domain or, equivalently, convolution with its impulse response, a sinc function, in the time domain.
However, the ideal filter is impossible to realize without also having signals of infinite extent in time, and so generally needs to be approximated for real ongoing signals, because the sinc function's support region extends to all past and future times. The filter would therefore need to have infinite delay, or knowledge of the infinite future and past, to perform the convolution. It is effectively realizable for pre-recorded digital signals by assuming extensions of zero into the past and future, or, more typically, by making the signal repetitive and using Fourier analysis.
Real filters for real-time applications approximate the ideal filter by truncating and windowing the infinite impulse response to make a finite impulse response; applying that filter requires delaying the signal for a moderate period of time, allowing the computation to "see" a little bit into the future. This delay is manifested as phase shift. Greater accuracy in approximation requires a longer delay.
Truncating an ideal low-pass filter result in ringing artifacts via the Gibbs phenomenon, which can be reduced or worsened by the choice of windowing function. Design and choice of real filters involves understanding and minimizing these artifacts. For example, simple truncation of the sinc function will create severe ringing artifacts, which can be reduced using window functions that drop off more smoothly at the edges. [5]
The Whittaker–Shannon interpolation formula describes how to use a perfect low-pass filter to reconstruct a continuous signal from a sampled digital signal. Real digital-to-analog converters uses real filter approximations.
The time response of a low-pass filter is found by solving the response to the simple low-pass RC filter.
Using Kirchhoff's Laws we arrive at the differential equation [6]
If we let be a step function of magnitude then the differential equation has the solution [7]
where is the cutoff frequency of the filter.
The most common way to characterize the frequency response of a circuit is to find its Laplace transform [6] transfer function, . Taking the Laplace transform of our differential equation and solving for we get
A discrete difference equation is easily obtained by sampling the step input response above at regular intervals of where and is the time between samples. Taking the difference between two consecutive samples we have
Solving for we get
Where
Using the notation and , and substituting our sampled value, , we get the difference equation
Comparing the reconstructed output signal from the difference equation, , to the step input response, , we find that there is an exact reconstruction (0% error). This is the reconstructed output for a time-invariant input. However, if the input is time variant, such as , this model approximates the input signal as a series of step functions with duration producing an error in the reconstructed output signal. The error produced from time variant inputs is difficult to quantify[ citation needed ] but decreases as .
Many digital filters are designed to give low-pass characteristics. Both infinite impulse response and finite impulse response low pass filters, as well as filters using Fourier transforms, are widely used.
The effect of an infinite impulse response low-pass filter can be simulated on a computer by analyzing an RC filter's behavior in the time domain, and then discretizing the model.
From the circuit diagram to the right, according to Kirchhoff's Laws and the definition of capacitance:
(V) |
(Q) |
(I) |
where is the charge stored in the capacitor at time t. Substituting equation Q into equation I gives , which can be substituted into equation V so that
This equation can be discretized. For simplicity, assume that samples of the input and output are taken at evenly spaced points in time separated by time. Let the samples of be represented by the sequence , and let be represented by the sequence , which correspond to the same points in time. Making these substitutions,
Rearranging terms gives the recurrence relation
That is, this discrete-time implementation of a simple RC low-pass filter is the exponentially weighted moving average
By definition, the smoothing factor is within the range . The expression for α yields the equivalent time constant RC in terms of the sampling period and smoothing factor α,
Recalling that
note α and are related by,
and
If α=0.5, then the RC time constant equals the sampling period. If , then RC is significantly larger than the sampling interval, and .
The filter recurrence relation provides a way to determine the output samples in terms of the input samples and the preceding output. The following pseudocode algorithm simulates the effect of a low-pass filter on a series of digital samples:
// Return RC low-pass filter output samples, given input samples, // time interval dt, and time constant RCfunction lowpass(real[1..n] x, real dt, real RC) varreal[1..n] y varreal α := dt / (RC + dt) y[1] := α * x[1] for i from 2 to n y[i] := α * x[i] + (1-α) * y[i-1] return y
The loop that calculates each of the n outputs can be refactored into the equivalent:
for i from 2 to n y[i] := y[i-1] + α * (x[i] - y[i-1])
That is, the change from one filter output to the next is proportional to the difference between the previous output and the next input. This exponential smoothing property matches the exponential decay seen in the continuous-time system. As expected, as the time constant RC increases, the discrete-time smoothing parameter decreases, and the output samples respond more slowly to a change in the input samples ; the system has more inertia . This filter is an infinite-impulse-response (IIR) single-pole low-pass filter.
Finite-impulse-response filters can be built that approximate the sinc function time-domain response of an ideal sharp-cutoff low-pass filter. For minimum distortion, the finite impulse response filter has an unbounded number of coefficients operating on an unbounded signal. In practice, the time-domain response must be time truncated and is often of a simplified shape; in the simplest case, a running average can be used, giving a square time response. [8]
For non-realtime filtering, to achieve a low pass filter, the entire signal is usually taken as a looped signal, the Fourier transform is taken, filtered in the frequency domain, followed by an inverse Fourier transform. Only O(n log(n)) operations are required compared to O(n2) for the time domain filtering algorithm.
This can also sometimes be done in real time, where the signal is delayed long enough to perform the Fourier transformation on shorter, overlapping blocks.
There are many different types of filter circuits, with different responses to changing frequency. The frequency response of a filter is generally represented using a Bode plot, and the filter is characterized by its cutoff frequency and rate of frequency rolloff. In all cases, at the cutoff frequency, the filter attenuates the input power by half or 3 dB. So the order of the filter determines the amount of additional attenuation for frequencies higher than the cutoff frequency.
On any Butterworth filter, if one extends the horizontal line to the right and the diagonal line to the upper-left (the asymptotes of the function), they intersect at exactly the cutoff frequency, 3 dB below the horizontal line. The various types of filters (Butterworth filter, Chebyshev filter, Bessel filter, etc.) all have different-looking knee curves. Many second-order filters have "peaking" or resonance that puts their frequency response above the horizontal line at this peak.
The meanings of 'low' and 'high'—that is, the cutoff frequency—depend on the characteristics of the filter. The term "low-pass filter" merely refers to the shape of the filter's response; a high-pass filter could be built that cuts off at a lower frequency than any low-pass filter—it is their responses that set them apart. Electronic circuits can be devised for any desired frequency range, right up through microwave frequencies (above 1 GHz) and higher.
Continuous-time filters can also be described in terms of the Laplace transform of their impulse response, in a way that lets all characteristics of the filter be easily analyzed by considering the pattern of poles and zeros of the Laplace transform in the complex plane. (In discrete time, one can similarly consider the Z-transform of the impulse response.)
For example, a first-order low-pass filter can be described by the continuous time transfer function, in the Laplace domain, as:
where H is the transfer function, s is the Laplace transform variable (complex angular frequency), τ is the filter time constant, is the cutoff frequency, and K is the gain of the filter in the passband. The cutoff frequency is related to the time constant by:
One simple low-pass filter circuit consists of a resistor in series with a load, and a capacitor in parallel with the load. The capacitor exhibits reactance, and blocks low-frequency signals, forcing them through the load instead. At higher frequencies, the reactance drops, and the capacitor effectively functions as a short circuit. The combination of resistance and capacitance gives the time constant of the filter (represented by the Greek letter tau). The break frequency, also called the turnover frequency, corner frequency, or cutoff frequency (in hertz), is determined by the time constant:
or equivalently (in radians per second):
This circuit may be understood by considering the time the capacitor needs to charge or discharge through the resistor:
Another way to understand this circuit is through the concept of reactance at a particular frequency:
The capacitor is not an "on/off" object (like the block or pass fluidic explanation above). The capacitor variably acts between these two extremes. It is the Bode plot and frequency response that show this variability.
A resistor–inductor circuit or RL filter is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first-order RL circuit is composed of one resistor and one inductor and is the simplest type of RL circuit.
A first-order RL circuit is one of the simplest analogue infinite impulse response electronic filters. It consists of a resistor and an inductor, either in series driven by a voltage source or in parallel driven by a current source.
An RLC circuit (the letters R, L, and C can be in a different sequence) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to those letters being the usual electrical symbols for resistance, inductance, and capacitance, respectively. The circuit forms a harmonic oscillator for current and will resonate in a similar way as an LC circuit will. The main difference that the presence of the resistor makes is that any oscillation induced in the circuit will die away over time if it is not kept going by a source. This effect of the resistor is called damping. The presence of the resistance also reduces the peak resonant frequency somewhat. Some resistance is unavoidable in real circuits, even if a resistor is not specifically included as a component. An ideal, pure LC circuit is an abstraction for the purpose of theory.
There are many applications for this circuit. They are used in many different types of oscillator circuits. Another important application is for tuning, such as in radio receivers or television sets, where they are used to select a narrow range of frequencies from the ambient radio waves. In this role, the circuit is often called a tuned circuit. An RLC circuit can be used as a band-pass filter, band-stop filter, low-pass filter, or high-pass filter. The RLC filter is described as a second-order circuit, meaning that any voltage or current in the circuit can be described by a second-order differential equation in circuit analysis.
The transfer function of a second-order low-pass filter can be expressed as a function of frequency as shown in Equation 1, the Second-Order Low-Pass Filter Standard Form.
In this equation, is the frequency variable, is the cutoff frequency, is the frequency scaling factor, and is the quality factor. Equation 1 describes three regions of operation: below cutoff, in the area of cutoff, and above cutoff. For each area, Equation 1 reduces to:
With attenuation at frequencies above increasing by a power of two, the last formula describes a second-order low-pass filter. The frequency scaling factor is used to scale the cutoff frequency of the filter so that it follows the definitions given before.
Higher-order passive filters can also be constructed (see diagram for a third-order example).
An active low-pass filter adds an active device to create an active filter that allows for gain in the passband.
In the operational amplifier circuit shown in the figure, the cutoff frequency (in hertz) is defined as:
or equivalently (in radians per second):
The gain in the passband is −R2/R1, and the stopband drops off at −6 dB per octave (that is −20 dB per decade) as it is a first-order filter.
Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant in which case they can be analyzed exactly using LTI system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain. Real-time implementations of such linear signal processing filters in the time domain are inevitably causal, an additional constraint on their transfer functions. An analog electronic circuit consisting only of linear components will necessarily fall in this category, as will comparable mechanical systems or digital signal processing systems containing only linear elements. Since linear time-invariant filters can be completely characterized by their response to sinusoids of different frequencies, they are sometimes known as frequency filters.
A high-pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The amount of attenuation for each frequency depends on the filter design. A high-pass filter is usually modeled as a linear time-invariant system. It is sometimes called a low-cut filter or bass-cut filter in the context of audio engineering. High-pass filters have many uses, such as blocking DC from circuitry sensitive to non-zero average voltages or radio frequency devices. They can also be used in conjunction with a low-pass filter to produce a band-pass filter.
In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.
A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
An envelope detector is an electronic circuit that takes a (relatively) high-frequency signal as input and outputs the envelope of the original signal.
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.
The Sallen–Key topology is an electronic filter topology used to implement second-order active filters that is particularly valued for its simplicity. It is a degenerate form of a voltage-controlled voltage-source (VCVS) filter topology. It was introduced by R. P. Sallen and E. L. Key of MIT Lincoln Laboratory in 1955.
The RC time constant, denoted τ, the time constant of a resistor–capacitor circuit, is equal to the product of the circuit resistance and the circuit capacitance :
The Butterworth filter is a type of signal processing filter designed to have a frequency response that is as flat as possible in the passband. It is also referred to as a maximally flat magnitude filter. It was first described in 1930 by the British engineer and physicist Stephen Butterworth in his paper entitled "On the Theory of Filter Amplifiers".
A resistor–inductor circuit, or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source. It is one of the simplest analogue infinite impulse response electronic filters.
Electronic filters are a type of signal processing filter in the form of electrical circuits. This article covers those filters consisting of lumped electronic components, as opposed to distributed-element filters. That is, using components and interconnections that, in analysis, can be considered to exist at a single point. These components can be in discrete packages or part of an integrated circuit.
This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.
A phase-shift oscillator is a linear electronic oscillator circuit that produces a sine wave output. It consists of an inverting amplifier element such as a transistor or op amp with its output fed back to its input through a phase-shift network consisting of resistors and capacitors in a ladder network. The feedback network 'shifts' the phase of the amplifier output by 180 degrees at the oscillation frequency to give positive feedback. Phase-shift oscillators are often used at audio frequency as audio oscillators.
Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.
A switched capacitor (SC) is an electronic circuit that implements a function by moving charges into and out of capacitors when electronic switches are opened and closed. Usually, non-overlapping clock signals are used to control the switches, so that not all switches are closed simultaneously. Filters implemented with these elements are termed switched-capacitor filters, which depend only on the ratios between capacitances and the switching frequency, and not on precise resistors. This makes them much more suitable for use within integrated circuits, where accurately specified resistors and capacitors are not economical to construct, but accurate clocks and accurate relative ratios of capacitances are economical.
An all-pass filter is a signal processing filter that passes all frequencies equally in gain, but changes the phase relationship among various frequencies. Most types of filter reduce the amplitude of the signal applied to it for some values of frequency, whereas the all-pass filter allows all frequencies through without changes in level.
In electronics, a differentiator is a circuit that outputs a signal approximately proportional to the rate of change of its input signal. Because the derivative of a sinusoid is another sinusoid whose amplitude is multiplied by its frequency, a true differentiator that works across all frequencies can't be realized. Real circuits such as a 1st-order high-pass filter are able to approximate differentiation at lower frequencies by limiting the gain above its cutoff frequency. An active differentiator includes an amplifier, while a passive differentiator is made only of resistors, capacitors and inductors.
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)