| The μA741, a popular early integrated op amp | |
| Component type | Discrete circuit Integrated circuit |
|---|---|
| Inventor | Karl D. Swartzel Jr. |
| Pin names | |
| Electronic symbol | |
Circuit diagram symbol for a representative op amp. Pins are labeled as listed above. | |
An operational amplifier (often op amp or opamp) is a DC-coupled electronic voltage amplifier with a differential input, a (usually) single-ended output, [1] and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers.
By using negative feedback, an op amp circuit's characteristics (e.g. its gain, input and output impedance, bandwidth, and functionality) can be determined by external components and have little dependence on temperature coefficients or engineering tolerance in the op amp itself. This flexibility has made the op amp a popular building block in analog circuits.
Today, op amps are used widely in consumer, industrial, and scientific electronics. Many standard integrated circuit op amps cost only a few cents; however, some integrated or hybrid operational amplifiers with special performance specifications may cost over US$ 100. [2] Op amps may be packaged as components or used as elements of more complex integrated circuits.
The op amp is one type of differential amplifier. Other differential amplifier types include the fully differential amplifier (an op amp with a differential rather than single-ended output), the instrumentation amplifier (usually built from three op amps), the isolation amplifier (with galvanic isolation between input and output), and negative-feedback amplifier (usually built from one or more op amps and a resistive feedback network).
The amplifier's differential inputs consist of a non-inverting input (+) with voltage V+ and an inverting input (−) with voltage V−; ideally the op amp amplifies only the difference in voltage between the two, which is called the differential input voltage. The output voltage of the op amp Vout is given by the equation where AOL is the open-loop gain of the amplifier (the term "open-loop" refers to the absence of an external feedback loop from the output to the input).
The magnitude of AOL is typically very large (100,000 or more for integrated circuit op amps, corresponding to +100 dB). Thus, even small microvolts of difference between V+ and V− may drive the amplifier into clipping or saturation. The magnitude of AOL is not well controlled by the manufacturing process, and so it is impractical to use an open-loop amplifier as a stand-alone differential amplifier.
Without negative feedback, and optionally positive feedback for regeneration, an open-loop op amp acts as a comparator, although comparator ICs are better suited. [3] If the inverting input of an ideal op amp is held at ground (0 V), and the input voltage Vin applied to the non-inverting input is positive, the output will be maximum positive; if Vin is negative, the output will be maximum negative.
If predictable operation is desired, negative feedback is used, by applying a portion of the output voltage to the inverting input. The closed-loop feedback greatly reduces the gain of the circuit. When negative feedback is used, the circuit's overall gain and response is determined primarily by the feedback network, rather than by the op-amp characteristics. If the feedback network is made of components with values small relative to the op amp's input impedance, the value of the op amp's open-loop response AOL does not seriously affect the circuit's performance. In this context, high input impedance at the input terminals and low output impedance at the output terminal(s) are particularly useful features of an op amp.
The response of the op-amp circuit with its input, output, and feedback circuits to an input is characterized mathematically by a transfer function; designing an op-amp circuit to have a desired transfer function is in the realm of electrical engineering. The transfer functions are important in most applications of op amps, such as in analog computers.
In the non-inverting amplifier on the right, the presence of negative feedback via the voltage divider Rf, Rg determines the closed-loop gainACL = Vout / Vin. Equilibrium will be established when Vout is just sufficient to pull the inverting input to the same voltage as Vin. The voltage gain of the entire circuit is thus 1 + Rf / Rg. As a simple example, if Vin = 1 V and Rf = Rg, Vout will be 2 V, exactly the amount required to keep V− at 1 V. Because of the feedback provided by the Rf, Rg network, this is a closed-loop circuit.
Another way to analyze this circuit proceeds by making the following (usually valid) assumptions: [4]
The input signal Vin appears at both (+) and (−) pins per assumption 1, resulting in a current i through Rg equal to Vin / Rg:
Because Kirchhoff's current law states that the same current must leave a node as enter it, and because the impedance into the (−) pin is near infinity per assumption 2, we can assume practically all of the same current i flows through Rf, creating an output voltage
By combining terms, we determine the closed-loop gain ACL:
An ideal op amp is usually considered to have the following characteristics: [5] [6] [7]
These ideals can be summarized by the two golden rules:
The first rule only applies in the usual case where the op amp is used in a closed-loop design (negative feedback, where there is a signal path of some sort feeding back from the output to the inverting input). These rules are commonly used as a good first approximation for analyzing or designing op-amp circuits. [8] : 177
None of these ideals can be perfectly realized. A real op amp may be modeled with non-infinite or non-zero parameters using equivalent resistors and capacitors in the op-amp model. The designer can then include these effects into the overall performance of the final circuit. Some parameters may turn out to have negligible effect on the final design while others represent actual limitations of the final performance.
Real op amps differ from the ideal model in various aspects.
Op amps may be classified by their construction:
IC op amps may be classified in many ways, including:
The use of op amps as circuit blocks is much easier and clearer than specifying all their individual circuit elements (transistors, resistors, etc.), whether the amplifiers used are integrated or discrete circuits. In the first approximation op amps can be used as if they were ideal differential gain blocks; at a later stage, limits can be placed on the acceptable range of parameters for each op amp.
Circuit design follows the same lines for all electronic circuits. A specification is drawn up governing what the circuit is required to do, with allowable limits. For example, the gain may be required to be 100 times, with a tolerance of 5% but drift of less than 1% in a specified temperature range; the input impedance not less than one megohm; etc.
A basic circuit is designed, often with the help of electronic circuit simulation. Specific commercially available op amps and other components are then chosen that meet the design criteria within the specified tolerances at acceptable cost. If not all criteria can be met, the specification may need to be modified.
A prototype is then built and tested; additional changes to meet or improve the specification, alter functionality, or reduce the cost, may be made.
Without feedback, the op amp may be used as a voltage comparator. Note that a device designed primarily as a comparator may be better if, for instance, speed is important or a wide range of input voltages may be found since such devices can quickly recover from full-on or full-off saturated states.
A voltage level detector can be obtained if a reference voltage Vref is applied to one of the op amp's inputs. This means that the op amp is set up as a comparator to detect a positive voltage. If the voltage to be sensed, Ei, is applied to op amp's (+) input, the result is a noninverting positive-level detector: when Ei is above Vref, VO equals +Vsat; when Ei is below Vref, VO equals −Vsat. If Ei is applied to the inverting input, the circuit is an inverting positive-level detector: when Ei is above Vref, VO equals −Vsat.
A zero voltage level detector (Ei = 0) can convert, for example, the output of a sine-wave from a function generator into a variable-frequency square wave. If Ei is a sine wave, triangular wave, or wave of any other shape that is symmetrical around zero, the zero-crossing detector's output will be square. Zero-crossing detection may also be useful in triggering TRIACs at the best time to reduce mains interference and current spikes.
Another typical configuration of op amps is with positive feedback, which takes a fraction of the output signal back to the non-inverting input. An important application of positive feedback is the comparator with hysteresis, the Schmitt trigger.
Some circuits may use positive feedback and negative feedback around the same amplifier, for example triangle-wave oscillators and active filters.
In a non-inverting amplifier, the output voltage changes in the same direction as the input voltage.
The gain equation for the op amp is
However, in this circuit V− is a function of Vout because of the negative feedback through the R1, R2 network. R1 and R2 form a voltage divider, and as V− is a high-impedance input, it does not load it appreciably. Consequently
where
Substituting this into the gain equation, we obtain
Solving for :
If is very large, this simplifies to
The non-inverting input of the operational amplifier needs a path for DC to ground; if the signal source does not supply a DC path, or if that source requires a given load impedance, then the circuit will require another resistor from the non-inverting input to ground. When the operational amplifier's input bias currents are significant, then the DC source resistances driving the inputs should be balanced. [13] The ideal value for the feedback resistors (to give minimal offset voltage) will be such that the two resistances in parallel roughly equal the resistance to ground at the non-inverting input pin. That ideal value assumes the bias currents are well matched, which may not be true for all op amps. [14]
In an inverting amplifier, the output voltage changes in an opposite direction to the input voltage.
As with the non-inverting amplifier, we start with the gain equation of the op amp:
This time, V− is a function of both Vout and Vin due to the voltage divider formed by Rf and Rin. Again, the op-amp input does not apply an appreciable load, so
Substituting this into the gain equation and solving for Vout:
If AOL is very large, this simplifies to
A resistor is often inserted between the non-inverting input and ground (so both inputs see similar resistances), reducing the input offset voltage due to different voltage drops due to bias current, and may reduce distortion in some op amps.
A DC-blocking capacitor may be inserted in series with the input resistor when a frequency response down to DC is not needed and any DC voltage on the input is unwanted. That is, the capacitive component of the input impedance inserts a DC zero and a low-frequency pole that gives the circuit a bandpass or high-pass characteristic.
The potentials at the operational amplifier inputs remain virtually constant (near ground) in the inverting configuration. The constant operating potential typically results in distortion levels that are lower than those attainable with the non-inverting topology.[ citation needed ]
Most single, dual and quad op amps available have a standardized pin-out which permits one type to be substituted for another without wiring changes. A specific op amp may be chosen for its open loop gain, bandwidth, noise performance, input impedance, power consumption, or a compromise between any of these factors.
1941: A vacuum tube op amp. An op amp, defined as a general-purpose, DC-coupled, high-gain, inverting feedback amplifier, is first found in U.S. patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell Labs in 1941. This design used three vacuum tubes to achieve a gain of 90 dB and operated on voltage rails of ±350 V. It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op amps. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. This artillery director worked with the SCR-584 radar system to achieve extraordinary hit rates (near 90%) that would not have been possible otherwise. [15]
1947: An op amp with an explicit non-inverting input. In 1947, the operational amplifier was first formally defined and named in a paper by John R. Ragazzini of Columbia University. [16] In this same paper a footnote mentioned an op-amp design by a student that would turn out to be quite significant. This op amp, designed by Loebe Julie, had two major innovations. Its input stage used a long-tailed triode pair with loads matched to reduce drift in the output and, far more importantly, it was the first op-amp design to have two inputs (one inverting, the other non-inverting). The differential input made a whole range of new functionality possible, but it would not be used for a long time due to the rise of the chopper-stabilized amplifier. [15]
1949: A chopper-stabilized op amp. In 1949, Edwin A. Goldberg designed a chopper-stabilized op amp. [17] This set-up uses a normal op amp with an additional AC amplifier that goes alongside the op amp. The chopper gets an AC signal from DC by switching between the DC voltage and ground at a fast rate (60 or 400 Hz). This signal is then amplified, rectified, filtered and fed into the op amp's non-inverting input. This vastly improved the gain of the op amp while significantly reducing the output drift and DC offset. Unfortunately, any design that used a chopper couldn't use the non-inverting input for any other purpose. Nevertheless, the much-improved characteristics of the chopper-stabilized op amp made it the dominant way to use op amps. Techniques that used the non-inverting input were not widely practiced until the 1960s when op-amp ICs became available.
1953: A commercially available op amp. In 1953, vacuum tube op amps became commercially available with the release of the model K2-W from George A. Philbrick Researches, Incorporated. The designation on the devices shown, GAP/R, is an acronym for the complete company name. Two nine-pin 12AX7 vacuum tubes were mounted in an octal package and had a model K2-P chopper add-on available. This op amp was based on a descendant of Loebe Julie's 1947 design and, along with its successors, would start the widespread use of op amps in industry. [18]
1961: A discrete IC op amp. With the birth of the transistor in 1947, and the silicon transistor in 1954, the concept of ICs became a reality. The introduction of the planar process in 1959 made transistors and ICs stable enough to be commercially useful. By 1961, solid-state, discrete op amps were being produced. These op amps were effectively small circuit boards with packages such as edge connectors. They usually had hand-selected resistors in order to improve things such as voltage offset and drift. The P45 (1961) had a gain of 94 dB and ran on ±15 V rails. It was intended to deal with signals in the range of ±10 V.
1961: A varactor bridge op amp. There have been many different directions taken in op-amp design. Varactor bridge op amps started to be produced in the early 1960s. [19] [20] They were designed to have extremely small input current and are still amongst the best op amps available in terms of common-mode rejection with the ability to correctly deal with hundreds of volts at their inputs.
1962: An op amp in a potted module. By 1962, several companies were producing modular potted packages that could be plugged into printed circuit boards.[ citation needed ] These packages were crucially important as they made the operational amplifier into a single black box which could be easily treated as a component in a larger circuit.
1963: A monolithic IC op amp. In 1963, the first monolithic IC op amp, the μA702 designed by Bob Widlar at Fairchild Semiconductor, was released. Monolithic ICs consist of a single chip as opposed to a chip and discrete parts (a discrete IC) or multiple chips bonded and connected on a circuit board (a hybrid IC). Almost all modern op amps are monolithic ICs; however, this first IC did not meet with much success. Issues such as an uneven supply voltage, low gain and a small dynamic range held off the dominance of monolithic op amps until 1965 when the μA709 [21] (also designed by Bob Widlar) was released.
1968: Release of the μA741. The popularity of monolithic op amps was further improved with the release of the LM101 in 1967, which solved a variety of issues, and the subsequent release of the μA741 in 1968. The μA741 was extremely similar to the LM101 except that Fairchild's manufacturing processes allowed them to include a 30 pF compensation capacitor inside the chip instead of requiring external compensation. This simple difference has made the 741 the canonical op amp and many modern amps base their pinout on the 741s. The μA741 is still in production, and has become ubiquitous in electronics—many manufacturers produce a version of this classic chip, recognizable by part numbers containing 741.
1970: First high-speed, low-input current FET design. In the 1970s high-speed, low-input current designs started to be made by using FETs. These would be largely replaced by op amps made with MOSFETs in the 1980s.
1972: Single-sided supply op amps being produced. A single-sided supply op amp is one where the input and output voltages can be as low as the negative power supply voltage instead of needing to be at least two volts above it. The result is that it can operate in many applications with the negative supply pin on the op amp being connected to the signal ground, thus eliminating the need for a separate negative power supply. The LM324, released in 1972, was one such op amp that came in a quad package (four separate op amps in one package) and became an industry standard.
Recent trends. Supply voltages in analog circuits have decreased (as they have in digital logic) and low-voltage op amps have been introduced reflecting this. Supplies of 5 V and increasingly 3.3 V (sometimes as low as 1.8 V) are common. To maximize the signal range, modern op amps commonly have rail-to-rail output (the output signal can range from the lowest supply voltage to the highest) and sometimes rail-to-rail inputs. [10]
APEX PA98 Op Amp Modules, Selling Price: $207.51