Last updated
Type Passive
Pin configuration anode, gate and cathode
Electronic symbol

TRIAC, from triode for alternating current, is a generic trademark for a three terminal electronic component that conducts current in either direction when triggered. Its formal name is bidirectional triode thyristor or bilateral triode thyristor. A thyristor is analogous to a relay in that a small voltage and current can control a much larger voltage and current. The illustration on the right shows the circuit symbol for a TRIAC where A1 is Anode 1, A2 is Anode 2, and G is Gate. Anode 1 and Anode 2 are normally termed Main Terminal 1 (MT1) and Main Terminal 2 (MT2) respectively.

Generic trademark trademark or brand name that has become the generic name for a class of product or service, sometimes resulting in loss of legal protection

A generic trademark, also known as a genericized trademark or proprietary eponym, is a trademark or brand name that, due to its popularity or significance, has become the generic name for, or synonymous with, a general class of product or service, usually against the intentions of the trademark's holder. The process of a product's name becoming genericized is known as genericide.

Electronic component basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

Electric current flow of electric charge

An electric current is a flow of electric charge. In electric circuits this charge is often carried by moving electrons in a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionised gas (plasma).


TRIACs are a subset of thyristors and are related to silicon controlled rectifiers (SCRs). TRIACs differ from SCRs in that they allow current flow in both directions, whereas an SCR can only conduct current in a single direction. Most TRIACs can be triggered by applying either a positive or negative voltage to the gate (an SCR requires a positive voltage). Once triggered, SCRs and TRIACs continue to conduct, even if the gate current ceases, until the main current drops below a certain level called the holding current.

Thyristor semiconductor device with three or more p-n junctions, having two steady states: off (non-conducting) and on (conducting)

A thyristor is a solid-state semiconductor device with four layers of alternating P- and N-type materials. It acts exclusively as a bistable switch, conducting when the gate receives a current trigger, and continuing to conduct until the voltage across the device is reversed biased, or until the voltage is removed. A three-lead thyristor is designed to control the larger current of the Anode to Cathode path by controlling that current with the smaller current of its other lead, known as its Gate. In contrast, a two-lead thyristor is designed to switch on if the potential difference between its leads is sufficiently large.

Silicon controlled rectifier semiconductor electronic device with three p-n junctions, mainly used in devices where the control of high power is demanded

A silicon controlled rectifier or semiconductor controlled rectifier is a four-layer solid-state current-controlling device. The principle of four-layer p–n–p–n switching was developed by Moll, Tanenbaum, Goldey and Holonyak of Bell Laboratories in 1956. The practical demonstration of silicon controlled switching and detailed theoretical behavior of a device in agreement with the experimental results was presented by Dr Ian M. Mackintosh of Bell Laboratories in January 1958. The name "silicon controlled rectifier" is General Electric's trade name for a type of thyristor. The SCR was developed by a team of power engineers led by Gordon Hall and commercialized by Frank W. "Bill" Gutzwiller in 1957.

Gate turn-off thyristors (GTOs) are similar to TRIACs but provide more control by turning off when the gate signal ceases.

Gate turn-off thyristor

A gate turn-off thyristor (GTO) is a special type of thyristor, which is a high-power semiconductor device. It was invented at General Electric. GTOs, as opposed to normal thyristors, are fully controllable switches which can be turned on and off by their third lead, the gate lead.

TRIACs' bidirectionality makes them convenient switches for alternating-current (AC). In addition, applying a trigger at a controlled phase angle of the AC in the main circuit allows control of the average current flowing into a load (phase control). This is commonly used for controlling the speed of induction motors, dimming lamps, and controlling electric heaters.


To understand how TRIACs work, consider the triggering in each of the four quadrants. The four quadrants are illustrated in Figure 1, and depend on the gate and MT2 voltages with respect to MT1. Main Terminal 1 (MT1) and Main Terminal (MT2) are also referred to as Anode 1 (A1) and Anode 2 (A2) respectively. [1]

The relative sensitivity depends on the physical structure of a particular triac, but as a rule, quadrant I is the most sensitive (least gate current required), and quadrant 4 is the least sensitive (most gate current required).[ clarification needed Why is Q-IV the least sensitive? See discussion ]

In quadrants 1 and 2, MT2 is positive, and current flows from MT2 to MT1 through P, N, P and N layers. The N region attached to MT2 does not participate significantly. In quadrants 3 and 4, MT2 is negative, and current flows from MT1 to MT2, also through P, N, P and N layers. The N region attached to MT2 is active, but the N region attached to MT1 only participates in the initial triggering, not the bulk current flow.

In most applications, the gate current comes from MT2, so quadrants 1 and 3 are the only operating modes (both gate and MT2 positive or negative against MT1). Other applications with single polarity triggering from an IC or digital drive circuit operate in quadrants 2 and 3, than MT1 is usually connected to positive voltage (e.g. +5V) and gate is pulled down to 0V (ground).

Quadrant 1

Quadrant 1 operation occurs when the gate and MT2 are positive with respect to MT1. Figure 1

The mechanism is illustrated in Figure 3. The gate current makes an equivalent NPN transistor switch on, which in turn draws current from the base of an equivalent PNP transistor, turning it on also. Part of the gate current (dotted line) is lost through the ohmic path across the p-silicon, flowing directly into MT1 without passing through the NPN transistor base. In this case, the injection of holes in the p-silicon makes the stacked n, p and n layers beneath MT1 behave like a NPN transistor, which turns on due to the presence of a current in its base. This, in turn, causes the p, n and p layers over MT2 to behave like a PNP transistor, which turns on because its n-type base becomes forward-biased with respect to its emitter (MT2). Thus, the triggering scheme is the same as an SCR. The equivalent circuit is depicted in Figure 4.

However, the structure is different from SCRs. In particular, TRIAC always has a small current flowing directly from the gate to MT1 through the p-silicon without passing through the p-n junction between the base and the emitter of the equivalent NPN transistor. This current is indicated in Figure 3 by a dotted red line and is the reason why a TRIAC needs more gate current to turn on than a comparably rated SCR. [2]

Generally, this quadrant is the most sensitive of the four. This is because it is the only quadrant where gate current is injected directly into the base of one of the main device transistors.[ clarification needed Why is Q-I the most sensitive? See discussion ]

Quadrant 2

Quadrant 2 operation occurs when the gate is negative and MT2 is positive with respect to MT1. Figure 1

Figure 5 shows the triggering process. The turn-on of the device is three-fold and starts when the current from MT1 flows into the gate through the p-n junction under the gate. This switches on a structure composed by an NPN transistor and a PNP transistor, which has the gate as cathode (the turn-on of this structure is indicated by "1" in the figure). As current into the gate increases, the potential of the left side of the p-silicon under the gate rises towards MT1, since the difference in potential between the gate and MT2 tends to lower: this establishes a current between the left side and the right side of the p-silicon (indicated by "2" in the figure), which in turn switches on the NPN transistor under the MT1 terminal and as a consequence also the pnp transistor between MT2 and the right side of the upper p-silicon. So, in the end, the structure which is crossed by the major portion of the current is the same as quadrant-I operation ("3" in Figure 5). [2]

Quadrant 3

Quadrant 3 operation occurs when the gate and MT2 are negative with respect to MT1. Figure 1

The whole process is outlined in Figure 6. The process happens in different steps here too. In the first phase, the pn junction between the MT1 terminal and the gate becomes forward-biased (step 1). As forward-biasing implies the injection of minority carriers in the two layers joining the junction, electrons are injected in the p-layer under the gate. Some of these electrons do not recombine and escape to the underlying n-region (step 2). This in turn lowers the potential of the n-region, acting as the base of a pnp transistor which switches on (turning the transistor on without directly lowering the base potential is called remote gate control). The lower p-layer works as the collector of this PNP transistor and has its voltage heightened: this p-layer also acts as the base of an NPN transistor made up by the last three layers just over the MT2 terminal, which, in turn, gets activated. Therefore, the red arrow labeled with a "3" in Figure 6 shows the final conduction path of the current. [2]

Quadrant 4

Quadrant 4 operation occurs when the gate is positive and MT2 is negative with respect to MT1. Figure 1

Triggering in this quadrant is similar to triggering in quadrant III. The process uses a remote gate control and is illustrated in Figure 7. As current flows from the p-layer under the gate into the n-layer under MT1, minority carriers in the form of free electrons are injected into the p-region and some of them are collected by the underlying n-p junction and pass into the adjoining n-region without recombining. As in the case of a triggering in quadrant III, this lowers the potential of the n-layer and turns on the PNP transistor formed by the n-layer and the two p-layers next to it. The lower p-layer works as the collector of this PNP transistor and has its voltage heightened: this p-layer also acts as the base of an NPN transistor made up by the last three layers just over the MT2 terminal, which, in turn, gets activated. Therefore, the red arrow labeled with a "3" in Figure 6 shows the final conduction path of the current. [2]

Generally, this quadrant is the least sensitive of the four[ clarification needed Why is quadrant 4 the least sensitive? See discussion ] In addition, some models of TRIACs (logic level and snubberless types) cannot be triggered in this quadrant but only in the other three.


There are some drawbacks one should know when using a TRIAC in a circuit. In this section, a few are summarized.

Gate threshold current, latching current and holding current

A TRIAC starts conducting when a current flowing into or out of its gate is sufficient to turn on the relevant junctions in the quadrant of operation. The minimum current able to do this is called gate threshold current and is generally indicated by IGT. In a typical TRIAC, the gate threshold current is generally a few milliamperes, but one has to take into account also that:

When the gate current is discontinued, if the current between the two main terminals is more than what is called the latching current, the device continues to conduct. Latching current is the minimum current that keeps the device internal structure latched in the absence of gate current. The value of this parameter varies with:

In particular, if the pulse width of the gate current is sufficiently large (generally some tens of microseconds), the TRIAC has completed the triggering process when the gate signal is discontinued and the latching current reaches a minimum level called holding current. Holding current is the minimum required current flowing between the two main terminals that keeps the device on after it has achieved commutation in every part of its internal structure.

In datasheets, the latching current is indicated as IL, while the holding current is indicated as IH. They are typically in the order of some milliamperes.

Static dv/dt

A high between MT2 and MT1 may turn on the TRIAC when it is off. Typical values of critical static dv/dt are in the terms of volts per microsecond.

The turn-on is due to a parasitic capacitive coupling of the gate terminal with the MT2 terminal, which lets currents into the gate in response to a large rate of voltage change at MT2. One way to cope with this limitation is to design a suitable RC or RCL snubber network. In many cases this is sufficient to lower the impedance of the gate towards MT1. By putting a resistor or a small capacitor (or both in parallel) between these two terminals, the capacitive current generated during the transient flows out of the device without activating it. A careful reading of the application notes provided by the manufacturer and testing of the particular device model to design the correct network is in order. Typical values for capacitors and resistors between the gate and MT1 may be up to 100 nF and 10 Ω to 1 kΩ. [3] Normal TRIACs, except for low-power types marketed as sensitive gate, [4] already have such a resistor built in to safeguard against spurious dv/dt triggering. This will mask the gate's supposed diode-type behaviour when testing a TRIAC with a multimeter.

In datasheets, the static dv/dt is usually indicated as and, as mentioned before, is in relation to the tendency of a TRIAC to turn on from the off state after a large voltage rate of rise even without applying any current in the gate.

Critical di/dt

A high rate of rise of the current between MT1 and MT2 (in either direction) when the device is turning on can damage or destroy the TRIAC even if the pulse duration is very short. The reason is that during the commutation, the power dissipation is not uniformly distributed across the device. When switching on, the device starts to conduct current before the conduction finishes to spread across the entire junction. The device typically starts to conduct the current imposed by the external circuitry after some nanoseconds or microseconds but the complete switch on of the whole junction takes a much longer time, so too swift a current rise may cause local hot spots that can permanently damage the TRIAC.

In datasheets, this parameter is usually indicated as and is typically in the order of the tens of ampere per microsecond. [1]

Commutating dv/dt and di/dt

The commutating dv/dt rating applies when a TRIAC has been conducting and attempts to turn off with a partially reactive load, such as an inductor. The current and voltage are out of phase, so when the current decreases below the holding value, the TRIAC attempts to turn off, but because of the phase shift between current and voltage, a sudden voltage step takes place between the two main terminals, which turns the device on again.

In datasheets, this parameter is usually indicated as and is generally in the order of up to some volts per microsecond.

The reason why commutating dv/dt is less than static dv/dt is that, shortly before the device tries to turn off, there is still some excess minority charge in its internal layers as a result of the previous conduction. When the TRIAC starts to turn off, these charges alter the internal potential of the region near the gate and MT1, so it is easier for the capacitive current due to dv/dt to turn on the device again.

Another important factor during a commutation from on-state to off-state is the di/dt of the current from MT1 to MT2. This is similar to the recovery in standard diodes: the higher the di/dt, the greater the reverse current. Because in the TRIAC there are parasitic resistances, a high reverse current in the p-n junctions inside it can provoke a voltage drop between the gate region and the MT1 region which may make the TRIAC stay turned on.

In a datasheet, the commutating di/dt is usually indicated as and is generally in the order of some amperes per microsecond.

The commutating dv/dt is very important when the TRIAC is used to drive a load with a phase shift between current and voltage, such as an inductive load. Suppose one wants to turn the inductor off: when the current goes to zero, if the gate is not fed, the TRIAC attempts to turn off, but this causes a step in the voltage across it due to the aforementioned phase shift. If the commutating dv/dt rating is exceeded, the device will not turn off.

Snubber circuits

When used to control reactive (inductive or capacitive) loads, care must be taken to ensure that the TRIAC turns off correctly at the end of each half-cycle of the AC in the main circuit. TRIACs can be sensitive to fast voltage changes (dv/dt) between MT1 and MT2, so a phase shift between current and voltage caused by reactive loads can lead to a voltage step that can turn the thyristor on erroneously. [2] An electric motor is typically an inductive load and off-line power supplies—as used in most TVs and computers—are capacitive.

Unwanted turn-ons can be avoided by using a snubber circuit (usually of the resistor/capacitor or resistor/capacitor/inductor type) between MT1 and MT2. Snubber circuits are also used to prevent premature triggering, caused for example by voltage spikes in the mains supply.

Because turn-ons are caused by internal capacitive currents flowing into the gate as a consequence of a high dv/dt, (i.e., rapid voltage change) a gate resistor or capacitor (or both in parallel) may be connected between the gate and MT1 to provide a low-impedance path to MT1 and further prevent false triggering. This, however, increases the required trigger current or adds latency due to capacitor charging. On the other hand, a resistor between the gate and MT1 helps draw leakage currents out of the device, thus improving the performance of the TRIAC at high temperature, where the maximum allowed dv/dt is lower. Values of resistors less than 1kΩ and capacitors of 100nF are generally suitable for this purpose, although the fine-tuning should be done on the particular device model. [3]

For higher-powered, more-demanding loads, two SCRs in inverse parallel may be used instead of one TRIAC. Because each SCR will have an entire half-cycle of reverse polarity voltage applied to it, turn-off of the SCRs is assured, no matter what the character of the load. However, due to the separate gates, proper triggering of the SCRs is more complex than triggering a TRIAC.

TRIACs may also fail to turn on reliably with reactive loads if the current phase shift causes the main circuit current to be below the holding current at trigger time. To overcome the problem DC may be used or a pulse trains to repeatedly trigger the TRIAC until it turns on.


Typical use as a dimmer Triac funktion.gif
Typical use as a dimmer

Low-power TRIACs are used in many applications such as light dimmers, speed controls for electric fans and other electric motors, and in the modern computerized control circuits of many household small and major appliances.

When mains voltage TRIACs are triggered by microcontrollers, optoisolators are frequently used; for example optotriacs can be used to control the gate current. Alternatively, where safety allows and electrical isolation of the controller isn't necessary, one of the microcontroller's power rails may be connected one of the mains supply. In these situations it is normal to connect the neutral terminal to the positive rail of the microcontroller's power supply, together with A1 of the triac, with A2 connected to the live. The TRIAC's gate can be connected through an opto-isolated transistor, and sometimes a resistor to the microcontroller, so that bringing the voltage down to the microcontroller's logic zero pulls enough current through the TRIAC's gate to trigger it. This ensures that the TRIAC is triggered in quadrants II and III and avoids quadrant IV where TRIACs are typically insensitive. [5]

Example data

Some typical TRIAC specifications [6] [7]
Variable nameParameterTypical value Unit
Gate threshold voltage0.7-1.5 V
Gate threshold current5–50 mA
Repetitive peak off-state forward voltage600–800 V
Repetitive peak off-state reverse voltage600–800 V
RMS on-state current4–40 A
On-state current, non-repetitive peak100–270 A
On-state forward voltage1.5 V

Three-quadrant TRIAC

Three-quadrant TRIACs only operate in quadrants 1 through 3 and cannot be triggered in quadrant 4. These devices are made specifically for improved commutation and can often control reactive loads without the use of a snubber circuit.

The first TRIACs of this type were marketed by Thomson Semiconductors (now ST Microelectronics) under the name "Alternistor". Later versions are sold under the trademark "Snubberless". Littelfuse also uses the name "Alternistor". Philips Semiconductors (now NXP Semiconductors) originated the trademark "High Commutation" ("Hi-Com").

Other three-quadrant TRIACs can operate with smaller gate-current to be directly driven by logic level components.

See also

Related Research Articles

Bipolar junction transistor transistor that uses both electron and hole charge carriers.In contrast,unipolar transistors such as field-effect transistors,only use one kind of charge carrier.For their operation,BJTs use 2 junctions between 2 semiconductor types,n-type and p-type

A bipolar junction transistor is a type of transistor that uses both electron and hole charge carriers. In contrast, unipolar transistors, such as field-effect transistors, only use one kind of charge carrier. For their operation, BJTs use two junctions between two semiconductor types, n-type and p-type.

A unijunction transistor (UJT) is a three-lead electronic semiconductor device with only one junction that acts exclusively as an electrically controlled switch.

Insulated-gate bipolar transistor three-terminal power semiconductor device

An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily used as an electronic switch which, as it was developed, came to combine high efficiency and fast switching. It consists of four alternating layers (P-N-P-N) that are controlled by a metal-oxide-semiconductor (MOS) gate structure without regenerative action. Although the structure of the IGBT is topologically the same as a thyristor with a 'MOS' gate, the thyristor action is completely suppressed and only the transistor action is permitted in the entire device operation range. It switches electric power in many applications: variable-frequency drives (VFDs), electric cars, trains, variable speed refrigerators, lamp ballasts, air-conditioners and even stereo systems with switching amplifiers.

Darlington transistor compound structure consisting of two bipolar transistors

In electronics,A multi-transistor configuration called darlington pair, or the Darlington configuration is a compound structure of a particular design made by two bipolar transistors connected in such a way that the current amplified by the first transistor is amplified further by the second one. This configuration gives a much higher current gain than each transistor taken separately.

DIAC diode that conducts current only after its breakover voltage has been reached momentarily

The DIAC is a diode that conducts electrical current only after its breakover voltage, VBO, has been reached momentarily. The term is an acronym of "diode for alternating current".

Integrated gate-commutated thyristor

The integrated gate-commutated thyristor (IGCT) is a power semiconductor electronic device, used for switching electric current in industrial equipment. It is related to the gate turn-off (GTO) thyristor.

IC power-supply pin

Almost all integrated circuits (ICs) have at least two pins that connect to the power rails of the circuit in which they are installed. These are known as the power-supply pins. However, the labeling of the pins varies by IC family and manufacturer.

Crowbar (circuit) Type of electrical circuit

A crowbar circuit is an electrical circuit used for preventing an overvoltage condition of a power supply unit from damaging the circuits attached to the power supply. It operates by putting a short circuit or low resistance path across the voltage output (Vo), quite like were one to drop a crowbar across the output terminals of the power supply. Crowbar circuits are frequently implemented using a thyristor, TRIAC, trisil or thyratron as the shorting device. Once triggered, they depend on the current-limiting circuitry of the power supply or, if that fails, the blowing of the line fuse or tripping the circuit breaker.


A latch-up is a type of short circuit which can occur in an integrated circuit (IC). More specifically it is the inadvertent creation of a low-impedance path between the power supply rails of a MOSFET circuit, triggering a parasitic structure which disrupts proper functioning of the part, possibly even leading to its destruction due to overcurrent. A power cycle is required to correct this situation.

Power MOSFET power MOS field-effect transistor

A power MOSFET is a specific type of metal oxide semiconductor field-effect transistor (MOSFET) designed to handle significant power levels.

Electronic symbol pictogram used to represent various electrical and electronic devices in a schematic diagram of an electrical or electronic circuit

An electronic symbol is a pictogram used to represent various electrical and electronic devices or functions, such as wires, batteries, resistors, and transistors, in a schematic diagram of an electrical or electronic circuit. These symbols are largely standardized internationally today, but may vary from country to country, or engineering discipline, based on traditional conventions.

Solid-state relay

A solid-state relay (SSR) is an electronic switching device that switches on or off when a small external voltage is applied across its control terminals. SSRs consist of a sensor which responds to an appropriate input, a solid-state electronic switching device which switches power to the load circuitry, and a coupling mechanism to enable the control signal to activate this switch without mechanical parts. The relay may be designed to switch either AC or DC to the load. It serves the same function as an electromechanical relay, but has no moving parts.

Founded in 1948, the Electronic Industries Association of Japan (EIAJ) was one of two Japanese electronics trade organizations that were merged into the Japan Electronics and Information Technology Industries Association (JEITA).

Quadracs are a special type of thyristor which combines a "diac" and a "triac" in a single package. The diac is the triggering device for the triac. Thyristors are four-layer (PNPN) semiconductor devices that act as switches, rectifiers or voltage regulators in a variety of applications. When triggered, thyristors turn on and become low-resistance current paths. They remain so even after the trigger is removed, and until the current is reduced to a certain level. Diacs are bi-directional diodes that switch AC voltages and trigger triacs or silicon-controlled rectifiers (SCRs). Except for a small leakage current, diacs do not conduct until the breakover voltage is reached. Triacs are three-terminal, silicon devices that function as two SCRs configured in an inverse, parallel arrangement. They provide load current during both halves of the AC supply voltage. By combining the functions of diacs and triacs, quadracs eliminate the need to buy and assemble discrete parts.

A Triggering device is an electronic circuit, such as a Schmitt trigger, which is used to control another electronic circuit.

The field-effect transistor (FET) is an electronic device which uses an electric field to control the flow of current. This is achieved by the application of a voltage to the gate terminal, which in turn alters the conductivity between the drain and source terminals.


  1. 1 2 "Thyristor Theory and Design Considerations", ON Semiconductor, available at
  2. 1 2 3 4 5 M.D. Singh, K.B. Khanchandani, Power Electronics, Second Edition, Tata McGraw-Hill, New Delhi, 2007, pages 148-152
  3. 1 2 Application Note AN-3008, RC Snubber Networks for Thyristor Power Control and Transient Suppression, Fairchild Semiconductor, available at, pages 1-5
  4. "2N6071A/B Series Sensitive Gate Triacs" (PDF). Semiconductor Components Industries, LLC. Retrieved June 28, 2012.
  5. triacs and microcontrollers - the easy connection
  6. "Philips Semiconductors Product specification Triacs BT138 series" (PDF). 090119
  7. "STMicroelectronics T3035H, T3050H Snubberless high temperature 30 A Triacs" (PDF). 100922

Further reading