Inductive output tube

Last updated
An IOT for UHF ATSC broadcast television, manufactured by e2v and shown new in packaging. Inductive output tube (IOT) for UHF ATSC broadcast television, manufactured by e2v and shown new in packaging.jpg
An IOT for UHF ATSC broadcast television, manufactured by e2v and shown new in packaging.

The inductive output tube (IOT) or klystrode is a variety of linear-beam vacuum tube, similar to a klystron, used as a power amplifier for high frequency radio waves. It evolved in the 1980s to meet increasing efficiency requirements for high-power RF amplifiers in radio transmitters. [1] The primary commercial use of IOTs is in UHF television transmitters, [2] where they have mostly replaced klystrons because of their higher efficiencies (35% to 40%) and smaller size. IOTs are also used in particle accelerators. They are capable of producing power output up to about 30 kW continuous and 7 MW pulsed and gains of 20–23 dB at frequencies up to about a gigahertz. [2]

Vacuum tube Device that controls electric current between electrodes in an evacuated container

In electronics, a vacuum tube, an electron tube, or valve or, colloquially, a tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.


A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian, which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar transmitters, and to generate the drive power for modern particle accelerators.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around twenty thousand times per second to around three hundred billion times per second. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies; these are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves. Different sources specify different upper and lower bounds for the frequency range.



The inductive output tube (IOT) was invented in 1938 by Andrew V. Haeff. A patent was later issued for the IOT to Andrew V. Haeff and assigned to the Radio Corporation of America (RCA). During the 1939 New York World's Fair the IOT was used in the transmission of the first television images from the Empire State Building to the fair grounds. RCA sold a small IOT commercially for a short time, under the type number 825. It was soon made obsolete by newer developments, and the technology lay more or less dormant for years.

Andrew (Andrey) Vasily Haeff was a Russian electrical engineer. Born in Moscow on 12 January 1905, Haeff's family fled to Harbin, China, when he was fifteen years old. He studied electrical and mechanical engineering at the Russian Polytechnic Institute in Harbin, graduating in 1928 and emigrating to the United States to study at the California Institute of Technology (Caltech). At Caltech, Haeff was awarded his MSc in 1929 and his PhD in 1932, with a thesis on an ultra-high frequency oscillator he later used in his invention of the traveling-wave tube amplifier.

Patent Intellectual property conferring a monopoly on a new invention

A patent is a form of intellectual property that gives its owner the legal right to exclude others from making, using, selling, and importing an invention for a limited period of years, in exchange for publishing an enabling public disclosure of the invention. In most countries patent rights fall under civil law and the patent holder needs to sue someone infringing the patent in order to enforce his or her rights. In some industries patents are an essential form of competitive advantage; in others they are irrelevant.

1939 New York Worlds Fair

The 1939–40 New York World's Fair, which covered the 1,216 acres (492 ha) of Flushing Meadows–Corona Park, was the second most expensive American world's fair of all time, exceeded only by St. Louis's Louisiana Purchase Exposition of 1904. Many countries around the world participated in it, and over 44 million people attended its exhibits in two seasons. It was the first exposition to be based on the future, with an opening slogan of "Dawn of a New Day", and it allowed all visitors to take a look at "the world of tomorrow". According to the official pamphlet:

The eyes of the Fair are on the future—not in the sense of peering toward the unknown nor attempting to foretell the events of tomorrow and the shape of things to come, but in the sense of presenting a new and clearer view of today in preparation for tomorrow; a view of the forces and ideas that prevail as well as the machines.

To its visitors the Fair will say: "Here are the materials, ideas, and forces at work in our world. These are the tools with which the World of Tomorrow must be made. They are all interesting and much effort has been expended to lay them before you in an interesting way. Familiarity with today is the best preparation for the future.

The inductive output tube has re-emerged within the last twenty years after having been discovered to possess particularly suitable characteristics (broadband linearity) for the transmission of digital television and high-definition digital television.

Digital television Transmission of audio and video by digitally processed and multiplexed signal

Digital television (DTV) is the transmission of television signals, including the sound channel, using digital encoding, in contrast to the earlier television technology, analog television, in which the video and audio are carried by analog signals. It is an innovative advance that represents the first significant evolution in television technology since color television in the 1950s. Digital TV transmits in a new image format called high definition television (HDTV), with greater resolution than analog TV, in a widescreen aspect ratio similar to recent movies in contrast to the narrower screen of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit multiple channels, up to 7, in the same bandwidth occupied by a single channel of analog television, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2006. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

High-definition television (HDTV) is a television system providing an image resolution that is of substantially higher resolution than that of standard-definition television. This can be either analog or digital. HDTV is the current standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television, Blu-rays, and streaming video.

In research undertaken prior to the transition from analog to digital television broadcasting, it was discovered that electromagnetic interference from lightning, high voltage AC power transmission, AC rectifiers, and ballasts used in fluorescent lighting, greatly affected low-band VHF channels (In North America, channels 2,3,4,5, & 6) making it difficult to impossible to use them for digital television. These low-numbered channels were often the first television broadcasters in a given city, and were often large, vital operations which had no choice but to relocate to UHF. In so doing, it made modern digital television predominantly a UHF medium, and IOTs have become the output tube of choice for the power output section of those transmitters.

The power output of the modern 21st century IOTs is orders of magnitude higher than the first IOTs produced by the RCA in 1940–1941 but the fundamental principle of operation basically remains the same. IOTs since the 1970s have been designed with electromagnetic modeling computer software that has greatly improved their electrodynamic performance.

How it works

Because of the every-household presence of the conventional television picture tube (Cathode-Ray Tube), it may be helpful to think of its principles of operation. Though the IOT does not produce a glowing phosphor output, internally many principles are the same.

Cathode-ray tube vacuum tube that can show moving pictures, vector graphics, or lines

The cathode-ray tube (CRT) is a vacuum tube that contains one or more electron guns and a phosphorescent screen, and is used to display images. It modulates, accelerates, and deflects electron beam(s) onto the screen to create the images. The images may represent electrical waveforms (oscilloscope), pictures, radar targets, or other phenomena. CRTs have also been used as memory devices, in which case the visible light emitted from the fluorescent material is not intended to have significant meaning to a visual observer.

IOTs have been described as a cross between a klystron and a triode, hence Eimac's trade name for them, Klystrode. They have an electron gun like a klystron, but with a control grid in front of it like a triode, with a very close spacing of around 0.1 mm. The high frequency RF voltage on the grid allows the electrons through in bunches. High voltage DC on a cylindrical anode accelerates the modulated electron beam through a small drift tube like a klystron. This drift tube prevents backflow of electromagnetic radiation. The bunched electron beam passes through the hollow anode into a resonant cavity, similar to the output cavity of a klystron, and strikes a collector electrode. As in a klystron, each bunch passes into the cavity at a time when the electric field decelerates it, transforming the kinetic energy of the beam into potential energy of the RF field, amplifying the signal. The oscillating electromagnetic energy in the cavity is extracted by a coaxial transmission line. An axial magnetic field prevents space charge spreading of the beam. The collector electrode is at a lower potential than the anode (depressed collector) which recovers some of the energy from the beam, increasing efficiency. [1] [2]

Triode electronic device having three active electrodes; the term most commonly applies to a single-grid amplifying vacuum tube

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

Eimac is a trade mark of Eimac Products, part of the Microwave Power Products Division of Communications & Power Industries. It produces power vacuum tubes for radio frequency applications such as broadcast and radar transmitters.

Electron gun

An electron gun is an electrical component in some vacuum tubes that produces a narrow, collimated electron beam that has a precise kinetic energy. The largest use is in cathode ray tubes (CRTs), used in nearly all television sets, computer displays and oscilloscopes that are not flat-panel displays. They are also used in field emission displays (FEDs), which are essentially flat-panel displays made out of rows of extremely small cathode ray tubes. They are also used in microwave linear beam vacuum tubes such as klystrons, inductive output tubes, travelling wave tubes, and gyrotrons, as well as in scientific instruments such as electron microscopes and particle accelerators. Electron guns may be classified by the type of electric field generation, by emission mechanism, by focusing, or by the number of electrodes.

Two differences from the klystron give it a lower cost and higher efficiency. First, the klystron uses velocity modulation to create bunching; its beam current is constant. It requires a drift tube several feet in length to allow the electrons to bunch. In contrast the IOT uses current modulation like an ordinary triode; most of the bunching is done by the grid, so the tube can be much shorter, making it less expensive to build and mount, and less bulky. Secondly, since the klystron has beam current throughout the RF cycle, it can only operate as an inefficient class-A amplifier, while the grid of the IOT allows more versatile operating modes. The grid can be biased so the beam current can be cut off during part of the cycle, enabling it to operate in the more efficient class B or AB mode. [1] [2]

The highest frequency achievable in an IOT is limited by the grid-to-cathode spacing. The electrons must be accelerated off the cathode and pass the grid before the RF electric field reverses direction. The upper limit on frequency is approximately 1300 MHz . The gain of the IOT is 20–23 dB versus 35–40 dB for a klystron. The lower gain is usually not a problem because at 20 dB the requirements for drive power (1% of output power) are within the capabilities of economical solid state UHF amplifiers. [1]

Recent advances

The latest versions of IOTs achieve even higher efficiencies (60%-70%) through the use of a Multistage Depressed Collector (MSDC). One manufacturer's version is called the Constant Efficiency Amplifier (CEA), while another manufacturer markets their version as the ESCIOT (Energy Saving Collector IOT). The initial design difficulties of MSDCIOTs were overcome through the use of recirculating high dielectric transformer oil as a combined coolant and insulation medium to prevent arcing and erosion between the closely spaced collector stages and to provide reliable low-maintenance collector cooling for the life of the tube. Earlier MSDC versions had to be air cooled (limited power) or used de-inonized water that had to be filtered, regularly exchanged and provided no freezing or corrosion protection.


Thermal radiation from the cathode heats the grid. As a result, low-work-function cathode material evaporates and condenses on the grid. This eventually leads to a short between cathode and grid, as the material accreting on the grid narrows the gap between it and the cathode. In addition, the emissive cathode material on the grid causes a negative grid current (reverse electron flow from the grid to the cathode). This can swamp the grid power supply if this reverse current gets too high, changing the grid (bias) voltage and, consequently, the operating point of the tube. Today's IOTs are equipped with coated cathodes that work at relatively low operating temperatures, and hence have slower evaporation rates, minimizing this effect.

Like most linear beam tubes having external tuning cavities, IOTs are vulnerable to arcing, and must be protected with arc detectors located in the output cavities that trigger a crowbar circuit based on a hydrogen thyratron or a triggered spark gap in the high-voltage supply. [1] The purpose of the crowbar circuit is to instantly dump the massive electrical charge stored in the high voltage beam supply before this energy can damage the tube assembly during an uncontrolled cavity, collector or cathode arc. [1]

See also

Related Research Articles

Amplifier electronic device that can increase the power of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

Cavity magnetron device for generating microwaves

The cavity magnetron is a high-powered vacuum tube that generates microwaves using the interaction of a stream of electrons with a magnetic field while moving past a series of open metal cavities. Electrons pass by the openings to these cavities and cause radio waves to oscillate within, similar to the way a whistle produces a tone when excited by an air stream blown past its opening. The frequency of the microwaves produced, the resonant frequency, is determined by the cavities' physical dimensions. Unlike other vacuum tubes such as a klystron or a traveling-wave tube (TWT), the magnetron cannot function as an amplifier in order to increase the intensity of an applied microwave signal; the magnetron serves solely as an oscillator, generating a microwave signal from direct current electricity supplied to the vacuum tube.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

Valve amplifier type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers during the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, audiophile stereo amplifiers, military applications and very high power radio and UHF television transmitters.

Traveling-wave tube

A traveling-wave tube or traveling-wave tube amplifier is a specialized vacuum tube that is used in electronics to amplify radio frequency (RF) signals in the microwave range. The TWT belongs to a category of "linear beam" tubes, such as the klystron, in which the radio wave is amplified by absorbing power from a beam of electrons as it passes down the tube. Although there are various types of TWT, two major categories are:

Control grid vacuum tube electrode

The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).

6L6 Beam tetrode for audio power amplifiers

6L6 is the designator for a vacuum tube introduced by Radio Corporation of America in July 1936. At the time Philips had already developed and patented power pentode designs, which were rapidly replacing power triodes due to their greater efficiency. The beam tetrode design of the 6L6 allowed RCA to circumvent Philips' pentode patent.


A gyrotron is a class of high-power linear-beam vacuum tubes which generates millimeter-wave electromagnetic waves by the cyclotron resonance of electrons in a strong magnetic field. Output frequencies range from about 20 to 527 GHz, covering wavelengths from microwave to the edge of the terahertz gap. Typical output powers range from tens of kilowatts to 1–2 megawatts. Gyrotrons can be designed for pulsed or continuous operation.

Pentode electronic device having five active electrodes; the term most commonly applies to a three-grid amplifying vacuum tube

A pentode is an electronic device having five active electrodes. The term most commonly applies to a three-grid amplifying vacuum tube, which was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode consists of an evacuated glass envelope containing five electrodes in this order: a cathode heated by a filament, a control grid, a screen grid, a suppressor grid, and a plate (anode). The pentode was developed from the tetrode tube by the addition of a third grid, the suppressor grid. This served to prevent secondary emission electrons emitted by the plate from reaching the screen grid, which caused instability and parasitic oscillations in the tetrode. The pentode is closely related to the beam tetrode. Pentodes were widely used in industrial and consumer electronic equipment such as radios and televisions until the 1960s, when they were replaced by transistors. Their main use now is in high power industrial applications such as radio transmitters. The obsolete consumer tubes are still used in a few legacy and specialty vacuum tube audio devices.

Backward-wave oscillator

A backward wave oscillator (BWO), also called carcinotron or backward wave tube, is a vacuum tube that is used to generate microwaves up to the terahertz range. Belonging to the traveling-wave tube family, it is an oscillator with a wide electronic tuning range.

Single-ended triode A single-ended tube audio amplifier employing a triode in the output stage

A single-ended triode (SET) is a vacuum tube electronic amplifier that uses a single triode to produce an output, in contrast to a push-pull amplifier which uses a pair of devices with antiphase inputs to generate an output with the wanted signals added and the distortion components subtracted. Single-ended amplifiers normally operate in Class A; push-pull amplifiers can also operate in Classes AB or B without excessive net distortion, due to cancellation.

Valve transmitters

Most high power transmitter amplifiers are of valve construction because of the high power required.

Valve RF amplifier

A valve RF amplifier or tube amplifier (U.S.), is a device for electrically amplifying the power of an electrical radio frequency signal.

Barkhausen–Kurz tube high frequency vacuum tube electronic oscillator

The Barkhausen–Kurz tube, also called the retarding-field tube, reflex triode, B–K oscillator, and Barkhausen oscillator was a high frequency vacuum tube electronic oscillator invented in 1920 by German physicists Heinrich Georg Barkhausen and Karl Kurz. It was the first oscillator that could produce radio power in the ultra-high frequency (UHF) portion of the radio spectrum, above 300 MHz. It was also the first oscillator to exploit electron transit time effects. It was used as a source of high frequency radio waves in research laboratories, and in a few UHF radio transmitters through World War 2. Its output power was low which limited its applications. However it inspired research that led to other more successful transit time tubes such as the klystron, which made the low power Barkhausen-Kurz tube obsolete.

Extended interaction oscillator

The extended interaction oscillator (EIO) is a linear-beam vacuum tube designed to convert direct current to RF power. The conversion mechanism is the space charge wave process whereby velocity modulation in an electron beam transforms to current or density modulation with distance.


  1. 1 2 3 4 5 6 Whitaker, Jerry C. (2005). The Electronics Handbook, 2nd Ed. CRC Press. pp. 488–489. ISBN   1420036661.
  2. 1 2 3 4 Sisodia, M. L. (2006). Microwave Active Devices : Vacuum And Solid State. New Age International. pp. 3.47–3.49. ISBN   8122414478.