Last updated
Giant GE hydrogen thyratron, used in pulsed radars, next to miniature 2D21 thyratron used to trigger relays in jukeboxes. Reference 2D21 tube is 2.125 inches tall Thyratronsmall.jpg
Giant GE hydrogen thyratron, used in pulsed radars, next to miniature 2D21 thyratron used to trigger relays in jukeboxes. Reference 2D21 tube is 2.125 inches tall

A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, producing a phenomenon known as Townsend discharge. Gases used include mercury vapor, xenon, neon, and (in special high-voltage applications or applications requiring very short switching times) hydrogen. [1] Unlike a vacuum tube (valve), a thyratron cannot be used to amplify signals linearly.

Gas-filled tube arrangement of electrodes in a gas within an insulating, temperature-resistant envelope

A gas-filled tube, also known as a discharge tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

In electrical engineering, a switch is an electrical component that can "make" or "break" an electrical circuit, interrupting the current or diverting it from one conductor to another. The mechanism of a switch removes or restores the conducting path in a circuit when it is operated. It may be operated manually, for example, a light switch or a keyboard button, may be operated by a moving object such as a door, or may be operated by some sensing element for pressure, temperature or flow. A switch will have one or more sets of contacts, which may operate simultaneously, sequentially, or alternately. Switches in high-powered circuits must operate rapidly to prevent destructive arcing, and may include special features to assist in rapidly interrupting a heavy current. Multiple forms of actuators are used for operation by hand or to sense position, level, temperature or flow. Special types are used, for example, for control of machinery, to reverse electric motors, or to sense liquid level. Many specialized forms exist. A common use is control of lighting, where multiple switches may be wired into one circuit to allow convenient control of light fixtures.

Rectifier AC-DC conversion device; electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.


In the 1920s, thyratrons were derived from early vacuum tubes such as the UV-200, which contained a small amount of argon gas to increase its sensitivity as a radio signal detector, and the German LRS relay tube, which also contained argon gas. Gas rectifiers, which predated vacuum tubes, such as the argon-filled General Electric "Tungar bulb" and the Cooper-Hewitt mercury-pool rectifier, also provided an influence. Irving Langmuir and G. S. Meikle of GE are usually cited as the first investigators to study controlled rectification in gas tubes, about 1914. The first commercial thyratrons appeared circa 1928.

The sensitivity of an electronic device, such as a communications system receiver, or detection device, such as a PIN diode, is the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio, or other specified criteria.

Radio technology of using radio waves to carry information

Radio is the technology of using radio waves to carry information, such as sound and images, by systematically modulating properties of electromagnetic energy waves transmitted through space, such as their amplitude, frequency, phase, or pulse width. When radio waves strike an electrical conductor, the oscillating fields induce an alternating current in the conductor. The information in the waves can be extracted and transformed back into its original form.

Peter Cooper Hewitt American electrical engineer

Peter Cooper Hewitt was an American electrical engineer and inventor, who invented the first mercury-vapor lamp in 1901. Hewitt was issued U.S. Patent 682,692 on September 17, 1901. In 1903, Hewitt created an improved version that possessed higher color qualities which eventually found widespread industrial use.

The term "thyristor" was derived from a combination of "thyratron" and "transistor". [2] Since the 1960s thyristors have replaced thyratrons in most low- and medium-power applications.

Thyristor semiconductor device with three or more p-n junctions, having two steady states: off (non-conducting) and on (conducting)

A thyristor is a solid-state semiconductor device with four layers of alternating P- and N-type materials. It acts exclusively as a bistable switch, conducting when the gate receives a current trigger, and continuing to conduct until the voltage across the device is reversed biased, or until the voltage is removed. A three-lead thyristor is designed to control the larger current of the Anode to Cathode path by controlling that current with the smaller current of its other lead, known as its Gate. In contrast, a two-lead thyristor is designed to switch on if the potential difference between its leads is sufficiently large.

Transistor semiconductor device used to amplify and switch electronic signals and electrical power

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.


Most commonly used symbols in the US and Europe of a thyratron (variations are usually related to the representation of the filament and the cathode) Thyratron Symbols.svg
Most commonly used symbols in the US and Europe of a thyratron (variations are usually related to the representation of the filament and the cathode)

Thyratrons resemble vacuum tubes both in appearance and construction but differ in behavior and operating principle. In a vacuum tube, conduction is dominated by free electrons because the distance between anode and cathode is small compared to the mean free path of electrons. A thyratron, on the other hand, is intentionally filled with gas so that the distance between anode and cathode is comparable with the mean free path of electrons. This means that conduction in a thyratron is dominated by plasma conductivity. Due to the high conductivity of plasma, a thyratron is capable of switching higher currents than vacuum tubes which are limited by space charge. A vacuum tube has the advantage that conductivity may be modulated at any time whereas a thyratron becomes filled with plasma and continues to conduct as long as a voltage exists between the anode and cathode. A pseudospark switch operates in a similar regime of the Paschen curve as a thyratron and is sometimes called a cold cathode thyratron.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

In electronics, a vacuum tube, an electron tube, or valve or, colloquially, a tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

Electron subatomic particle with negative electric charge

The electron is a subatomic particle, symbol
, whose electric charge is negative one elementary charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron has a mass that is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. As it is a fermion, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: they can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

Anode electrode through which conventional current flows into a polarized electrical device

An anode is an electrode through which the conventional current enters into a polarized electrical device. This contrasts with a cathode, an electrode through which conventional current leaves an electrical device. A common mnemonic is ACID for "anode current into device". The direction of conventional current in a circuit is opposite to the direction of electron flow, so electrons flow out the anode into the outside circuit. In a galvanic cell, the anode is the electrode at which the oxidation reaction occurs.

A thyratron consists of a hot cathode, an anode, and one or more control grids between the anode and cathode in an airtight glass or ceramic envelope that is filled with gas. The gas is typically hydrogen or deuterium at a pressure of 300 to 500 mTorr (40 to 70  Pa). Commercial thyratrons also contain a titanium hydride reservoir and a reservoir heater that together maintain gas pressure over long periods regardless of gas loss.

Hot cathode Type of electrode.

In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.

Control grid vacuum tube electrode

The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).

Hydrogen Chemical element with atomic number 1

Hydrogen is a chemical element with symbol H and atomic number 1. With a standard atomic weight of 1.008, hydrogen is the lightest element in the periodic table. Its monatomic form (H) is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass. Non-remnant stars are mainly composed of hydrogen in the plasma state. The most common isotope of hydrogen, termed protium, has one proton and no neutrons.

Conductivity of a thyratron remains low as long as the control grid is negative relative to the cathode because the grid repels electrons emitted by the cathode. Space charge limited electron current flows from the cathode through the control grid toward the anode if the grid is made positive relative to the cathode. Sufficiently high space charge limited current initiates Townsend discharge between anode and cathode. The resulting plasma provides high conductivity between anode and cathode and is not limited by space charge. Conductivity remains high until the current between anode and cathode drops to a small value for a sufficiently long time that the gas ceases to be ionized. This recovery process takes 25 to 75 μs and limits thyratron repetition rates to a few kHz. [3]

Townsend discharge gas ionisation process where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons

The Townsend discharge or Townsend avalanche is a gas ionisation process where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.

Ionization or ionisation, is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

Second SI unit of time

The second is the base unit of time in the International System of Units (SI), commonly understood and historically defined as ​186400 of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each. Mechanical and electric clocks and watches usually have a face with 60 tickmarks representing seconds and minutes, traversed by a second hand and minute hand. Digital clocks and watches often have a two-digit counter that cycles through seconds. The second is also part of several other units of measurement like meters per second for velocity, meters per second per second for acceleration, and per second for frequency.


Rare Z806W relay tube used in elevators Z806W.JPG
Rare Z806W relay tube used in elevators
Wynn-Williams's scale-of-two counter using thyratrons (with permission of the Cavendish Laboratory, University of Cambridge, UK.) Wynn-Williams Scale-of -Two Counter from the Cavendish Laboratory, University of Cambridge,UK.jpg
Wynn-Williams's scale-of-two counter using thyratrons (with permission of the Cavendish Laboratory, University of Cambridge, UK.)

Low-power thyratrons (relay tubes and trigger tubes) were manufactured for controlling incandescent lamps, electromechanical relays or solenoids, for bidirectional counters, to perform various functions in Dekatron calculators, for voltage threshold detectors in RC timers, etc. Glow thyratrons were optimized for high gas-discharge light output or even phosphorized and used as self-displaying shift registers in large-format, crawling-text dot-matrix displays.

Another use of the thyratron was in relaxation oscillators. [4] Since the plate turn-on voltage is much higher than the turn-off voltage, the tube exhibits hysteresis and, with a capacitor across it, it can function as a sawtooth oscillator. The voltage on the grid controls the breakdown voltage and thus the period of oscillation. Thyratron relaxation oscillators were used in power inverters and oscilloscope sweep circuits.

One miniature thyratron, the triode 6D4, found an additional use as a potent noise source, when operated as a diode (grid tied to cathode) in a transverse magnetic field. [5] Sufficiently filtered for "flatness" ("white noise") in a band of interest, such noise was used for testing radio receivers, servo systems and occasionally in analog computing as a random value source.

The miniature RK61/2 thyratron marketed in 1938 was designed specifically to operate like a vacuum triode below its ignition voltage, allowing it to amplify analog signals as a self-quenching superregenerative detector in radio control receivers, [6] and was the major technical development which led to the wartime development of radio-controlled weapons and the parallel development of radio controlled modelling as a hobby. [7]

Some early television sets, particularly British models, used thyratrons for vertical (frame) and horizontal (line) oscillators. [8]

Medium-power thyratrons found applications in machine tool motor controllers, where thyratrons, operating as phase-controlled rectifiers, are utilized in the tool's armature regulator (zero to "base speed", "constant torque" mode) and in the tool's field regulator ("base speed" to about twice "base speed", "constant horsepower" mode). Examples include Monarch Machine Tool 10EE lathe, which used thyratrons from 1949 until solid-state devices replaced them in 1984. [9]

High-power thyratrons are still manufactured, and are capable of operation up to tens of kiloamperes (kA) and tens of kilovolts (kV). Modern applications include pulse drivers for pulsed radar equipment, high-energy gas lasers, radiotherapy devices, particle accelerators and in Tesla coils and similar devices. Thyratrons are also used in high-power UHF television transmitters, to protect inductive output tubes from internal shorts, by grounding the incoming high-voltage supply during the time it takes for a circuit breaker to open and reactive components to drain their stored charges. This is commonly called a crowbar circuit .

Thyratrons have been replaced in most low and medium-power applications by corresponding semiconductor devices known as thyristors (sometimes called silicon-controlled rectifiers, or SCRs) and triacs. However, switching service requiring voltages above 20 kV and involving very short risetimes remains within the domain of the thyratron.

Variations of the thyratron idea are the krytron, the sprytron, the ignitron, and the triggered spark gap, all still used today in special applications, such as nuclear weapons (krytron) and AC/DC-AC power transmission (ignitron).

Example of a small thyratron

R.C.A. brand 885 Triode Thyratron 885 Thyratron.jpg
R.C.A. brand 885 Triode Thyratron

The 885 is a small thyratron tube, using argon gas. This device was used extensively in the timebase circuits of early oscilloscopes in the 1930s. It was employed in a circuit called a relaxation oscillator. During World War II, small thyratrons similar to the 885 were utilized in pairs to construct bistables, the "memory" cells used by early computers and code breaking machines. Thyratrons were also used for phase angle control of alternating current (AC) power sources in battery chargers and light dimmers, but these were usually of a larger current handling capacity than the 885. The 885 is a 2.5 volt, 5-pin based variant of the 884/6Q5.


  1. Turner, L. W., ed. (1976). Electronics Engineer's Reference Book (4th ed.). London: Newnes-Butterworth. pp. 7-177 and 7-180. ISBN   0-408-00168-2.
  2. "Archived copy" (PDF). Archived from the original (PDF) on 2012-09-05. Retrieved 2014-01-28.CS1 maint: Archived copy as title (link)
  3. Gas Discharge Closing Switches. Springer Science+Business Media, LLC. 1990. ISBN   978-1-4899-2132-1.
  4. Gottlieb, Irving (1997). Practical Oscillator Handbook. Elsevier. pp. 69–73. ISBN   0080539386.
  5. "6D4 Miniature triode thyratron data sheet" (PDF). Sylvania . Retrieved 25 May 2013.
  6. "Subminiature gas triode type RK61 data sheet" (PDF). Raytheon Company . Retrieved 20 March 2017.
  7. George Honnest-Redlich Radio Control for Models (1950) p. 7
  8. "Comparison of British and American Pre-1945 Sets". Early Television Museum of Hilliard OH. Retrieved 4 February 2018.
  9., retrieved 2012 July 27

Related Research Articles

Triode electronic device having three active electrodes; the term most commonly applies to a single-grid amplifying vacuum tube

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

Cold cathode Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

Ignitron type of gas-filled tube used as a controlled rectifier

An ignitron is a type of gas-filled tube used as a controlled rectifier and dating from the 1930s. Invented by Joseph Slepian while employed by Westinghouse, Westinghouse was the original manufacturer and owned trademark rights to the name "Ignitron". Ignitrons are closely related to mercury-arc valves but differ in the way the arc is ignited. They function similarly to thyratrons; a triggering pulse to the igniter electrode turns the device "on", allowing a high current to flow between the cathode and anode electrodes. After it is turned on, the current through the anode must be reduced to zero to restore the device to its nonconducting state. They are used to switch high currents in heavy industrial applications.


The krytron is a cold-cathode gas-filled tube intended for use as a very high-speed switch, somewhat similar to the thyratron. It consists of a sealed glass tube with four electrodes. A small triggering pulse on the grid electrode switches the tube on, allowing a large current to flow between the cathode and anode electrodes. The vacuum version is called a vacuum krytron, or sprytron. The krytron was one of the earliest developments of the EG&G Corporation.

Mercury-arc valve electrical equipment for converting high-voltage or -current alternating current into direct current

A mercury-arc valve or mercury-vapor rectifier or (UK) mercury-arc rectifier is a type of electrical rectifier used for converting high-voltage or high-current alternating current (AC) into direct current (DC). It is a type of cold cathode gas-filled tube, but is unusual in that the cathode, instead of being solid, is made from a pool of liquid mercury and is therefore self-restoring. As a result, mercury-arc valves were much more rugged and long-lasting, and could carry much higher currents than most other types of gas discharge tube.

Pentode electronic device having five active electrodes; the term most commonly applies to a three-grid amplifying vacuum tube

A pentode is an electronic device having five active electrodes. The term most commonly applies to a three-grid amplifying vacuum tube, which was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode consists of an evacuated glass envelope containing five electrodes in this order: a cathode heated by a filament, a control grid, a screen grid, a suppressor grid, and a plate (anode). The pentode was developed from the tetrode tube by the addition of a third grid, the suppressor grid. This served to prevent secondary emission electrons emitted by the plate from reaching the screen grid, which caused instability and parasitic oscillations in the tetrode. The pentode is closely related to the beam tetrode. Pentodes were widely used in industrial and consumer electronic equipment such as radios and televisions until the 1960s, when they were replaced by transistors. Their main use now is in high power industrial applications such as radio transmitters. The obsolete consumer tubes are still used in a few legacy and specialty vacuum tube audio devices.

Albert W. Hull American inventor

Albert Wallace Hull is an American physicist and electrical engineer who made contributions to the development of vacuum tubes, and invented the magnetron. He was a member of the National Academy of Sciences.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(de, it) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(fr, nl), RCA (us), RFT(de, sv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

In electronics, a crossatron is a high-power pulsed modulator device, a cold cathode gas-filled tube that combines the best features of thyratrons, vacuum tubes, and power semiconductor switches. This switch is capable of operating with voltages in excess of 100 kilovolts by the use of deuterium gas fill to increase the Paschen breakdown voltage, axial molybdenum cathode corrugations to provide a higher current capability, and a Paschen shield that is formed from molybdenum. The terminal curvature of the Paschen shield and of the adjacent portion of the anode are selected to establish a voltage stress at the curved Paschen shield surface within the approximate range of 90-150 kV/cm in response to a 100 kV differential. The cold cathode gives the crossatron an advantage of achievable lifetime and reliability in comparison to a hydrogen-filled thyratron.

Vacuum tubes produced in the former Soviet Union and in present-day Russia carry their own unique designations. Some confusion has been created in "translating" these designations, as they use Cyrillic rather than Latin characters.

Fleming valve a vacuum tube used as a detector for early radio receivers

The Fleming valve, also called the Fleming oscillation valve, was a thermionic valve or vacuum tube invented in 1904 by Englishman John Ambrose Fleming as a detector for early radio receivers used in electromagnetic wireless telegraphy. It was the first practical vacuum tube and the first thermionic diode, a vacuum tube whose purpose is to conduct current in one direction and block current flowing in the opposite direction. The thermionic diode was later widely used as a rectifier — a device which converts alternating current (AC) into direct current (DC) — in the power supplies of a wide range of electronic devices, until beginning to be replaced by the selenium rectifier in the early 1930s and almost completely replaced by the semiconductor diode in the 1960s. The Fleming valve was the forerunner of all vacuum tubes, which dominated electronics for 50 years. The IEEE has described it as "one of the most important developments in the history of electronics", and it is on the List of IEEE Milestones for electrical engineering.

Magic eye tube Vacuum tube which gives a visual indication of the amplitude of an electronic signal

A magic eye tube or tuning indicator, in technical literature called an electron-ray indicator tube, is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye is a specific type of such a tube with a circular display similar to the EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers, to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in.

Barkhausen–Kurz tube high frequency vacuum tube electronic oscillator

The Barkhausen–Kurz tube, also called the retarding-field tube, reflex triode, B–K oscillator, and Barkhausen oscillator was a high frequency vacuum tube electronic oscillator invented in 1920 by German physicists Heinrich Georg Barkhausen and Karl Kurz. It was the first oscillator that could produce radio power in the ultra-high frequency (UHF) portion of the radio spectrum, above 300 MHz. It was also the first oscillator to exploit electron transit time effects. It was used as a source of high frequency radio waves in research laboratories, and in a few UHF radio transmitters through World War 2. Its output power was low which limited its applications. However it inspired research that led to other more successful transit time tubes such as the klystron, which made the low power Barkhausen-Kurz tube obsolete.

Noise generator

A noise generator is a circuit that produces electrical noise. Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers.