The sensitivity of an electronic device, such as a communications system receiver, or detection device, such as a PIN diode, is the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio, or other specified criteria. In general, it is the signal level required for a particular quality of received information. [1]
In signal processing, sensitivity also relates to bandwidth and noise floor as is explained in more detail below.
In the field of electronics different definitions are used for sensitivity. The IEEE dictionary [2] [3] states: "Definitions of sensitivity fall into two contrasting categories." It also provides multiple definitions relevant to sensors among which 1: "(measuring devices) The ratio of the magnitude of its response to the magnitude of the quantity measured.” and 2: "(radio receiver or similar device) Taken as the minimum input signal required to produce a specified output signal having a specified signal-to-noise ratio.”. The first of these definitions is similar to the definition of responsivity and as a consequence sensitivity is sometimes considered to be improperly used as a synonym for responsivity , [4] [5] and it is argued that the second definition, which is closely related to the detection limit, is a better indicator of the performance of a measuring system. [6]
To summarize, two contrasting definitions of sensitivity are used in the field of electronics
The sensitivity of a microphone is usually expressed as the sound field strength in decibels (dB) relative to 1 V/Pa (Pa = N/m 2) or as the transfer factor in millivolts per pascal (mV/Pa) into an open circuit or into a 1 kiloohm load.[ citation needed ]
The sensitivity of a loudspeaker is usually expressed as dB / 2.83 VRMS at 1 metre.[ citation needed ] This is not the same as the electrical efficiency; see Efficiency vs sensitivity. The sensitivity of a hydrophone is usually expressed as dB relative to 1 V/μPa. [7]
This is an example where sensitivity is defined as the ratio of the sensor's response to the quantity measured. One should realize that when using this definition to compare sensors, the sensitivity of the sensor might depend on components like output voltage amplifiers, that can increase the sensor response such that the sensitivity is not a pure figure of merit of the sensor alone, but of the combination of all components in the signal path from input to response.
Sensitivity in a receiver, such a radio receiver, indicates its capability to extract information from a weak signal, quantified as the lowest signal level that can be useful. [8] It is mathematically defined as the minimum input signal required to produce a specified signal-to-noise S/N ratio at the output port of the receiver and is defined as the mean noise power at the input port of the receiver times the minimum required signal-to-noise ratio at the output of the receiver:
where
The same formula can also be expressed in terms of noise factor of the receiver as
where
Because receiver sensitivity indicates how faint an input signal can be to be successfully received by the receiver, the lower power level, the better. Lower power for a given S/N ratio means better sensitivity since the receiver's contribution is smaller. When the power is expressed in dBm the larger the absolute value of the negative number, the better the receive sensitivity. For example, a receiver sensitivity of −98 dBm is better than a receive sensitivity of −95 dBm by 3 dB, or a factor of two. In other words, at a specified data rate, a receiver with a −98 dBm sensitivity can hear signals that are half the power of those heard by a receiver with a −95 dBm receiver sensitivity.[ citation needed ].
For electronic sensors the input signal can be of many types, like position, force, acceleration, pressure, or magnetic field. The output signal for an electronic analog sensor is usually a voltage or a current signal . The responsivity of an ideal linear sensor in the absence of noise is defined as , whereas for nonlinear sensors it is defined as the local slope . In the absence of noise and signals at the input, the sensor is assumed to generate a constant intrinsic output noise . To reach a specified signal to noise ratio at the output , one combines these equations and obtains the following idealized equation for its sensitivity [5] , which is equal to the value of the input signal that results in the specified signal-to-noise ratio at the output:
This equation shows that sensor sensitivity can be decreased (=improved) by either reducing the intrinsic noise of the sensor or by increasing its responsivity . This is an example of a case where sensivity is defined as the minimum input signal required to produce a specified output signal having a specified signal-to-noise ratio. [2] This definition has the advantage that the sensitivity is closely related to the detection limit of a sensor if the minimum detectable SNRo is specified (SNR). The choice for the SNRo used in the definition of sensitivity depends on the required confidence level for a signal to be reliably detected (confidence (statistics)), and lies typically between 1-10. The sensitivity depends on parameters like bandwidth BW or integration time τ=1/(2BW) (as explained here: NEP), because noise level can be reduced by signal averaging, usually resulting in a reduction of the noise amplitude as where is the integration time over which the signal is averaged. A measure of sensitivity independent of bandwidth can be provided by using the amplitude or power spectral density of the noise and or signals () in the definition, with units like m/Hz1/2, N/Hz1/2, W/Hz or V/Hz1/2. For a white noise signal over the sensor bandwidth, its power spectral density can be determined from the total noise power (over the full bandwidth) using the equation . Its amplitude spectral density is the square-root of this value . Note that in signal processing the words energy and power are also used for quantities that do not have the unit Watt (Energy (signal processing)).
In some instruments, like spectrum analyzers, a SNRo of 1 at a specified bandwidth of 1 Hz is assumed by default when defining their sensitivity. [2] For instruments that measure power, which also includes photodetectors, this results in the sensitivity becoming equal to the noise-equivalent power and for other instruments it becomes equal to the noise-equivalent-input [9] . A lower value of the sensitivity corresponds to better performance (smaller signals can be detected), which seems contrary to the common use of the word sensitivity where higher sensitivity corresponds to better performance. [6] [10] It has therefore been argued that it is preferable to use detectivity, which is the reciprocal of the noise-equivalent input, as a metric for the performance of detectors [9] [11] .
As an example, consider a piezoresistive force sensor through which a constant current runs, such that it has a responsivity . The Johnson noise of the resistor generates a noise amplitude spectral density of . For a specified SNRo of 1, this results in a sensitivity and noise-equivalent input of and a detectivity of , such that an input signal of 10 nN generates the same output voltage as the noise does over a bandwidth of 1 Hz.
Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in unit of hertz.
In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.
Noise-equivalent power (NEP) is a measure of the sensitivity of a photodetector or detector system. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output bandwidth. An output bandwidth of one hertz is equivalent to half a second of integration time. The units of NEP are watts per square root hertz. The NEP is equal to the noise amplitude spectral density divided by the responsivity. The fundamental equation is .
Noise figure (NF) and noise factor (F) are figures of merit that indicate degradation of the signal-to-noise ratio (SNR) that is caused by components in a signal chain. These figures of merit are used to evaluate the performance of an amplifier or a radio receiver, with lower values indicating better performance.
Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.
The signal-to-noise and distortion ratio (SINAD) is a measure of the quality of a signal from a communications device, often defined as
The total harmonic distortion is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.
In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density. The law is named after Claude Shannon and Ralph Hartley.
In physics and engineering, the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one radian of the cycle of oscillation. Q factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results. Higher Q indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.
Channel capacity, in electrical engineering, computer science, and information theory, is the theoretical maximum rate at which information can be reliably transmitted over a communication channel.
In signal processing, the output of the matched filter is given by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise.
In digital communication or data transmission, is a normalized signal-to-noise ratio (SNR) measure, also known as the "SNR per bit". It is especially useful when comparing the bit error rate (BER) performance of different digital modulation schemes without taking bandwidth into account.
Friis formula or Friis's formula, named after Danish-American electrical engineer Harald T. Friis, is either of two formulas used in telecommunications engineering to calculate the signal-to-noise ratio of a multistage amplifier. One relates to noise factor while the other relates to noise temperature.
In telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation. For example, with FM radio, the strength of the 100 MHz carrier with modulations would be considered for CNR, whereas the audio frequency analogue message signal would be for SNR; in each case, compared to the apparent noise. If this distinction is not necessary, the term SNR is often used instead of CNR, with the same definition.
Effective number of bits (ENOB) is a measure of the dynamic range of an analog-to-digital converter (ADC), digital-to-analog converter, or their associated circuitry. The resolution of an ADC is specified by the number of bits used to represent the analog value. Ideally, a 12-bit ADC will have an effective number of bits of almost 12. However, real signals have noise, and real circuits are imperfect and introduce additional noise and distortion. Those imperfections reduce the number of bits of accuracy in the ADC. The ENOB describes the effective resolution of the system in bits. An ADC may have a 12-bit resolution, but the effective number of bits, when used in a system, may be 9.5.
In digital photography, the image sensor format is the shape and size of the image sensor.
Spurious-free dynamic range (SFDR) is the strength ratio of the fundamental signal to the strongest spurious signal in the output. It is also defined as a measure used to specify analog-to-digital and digital-to-analog converters and radio receivers.
Signal-to-noise ratio (SNR) is used in imaging to characterize image quality. The sensitivity of a imaging system is typically described in the terms of the signal level that yields a threshold level of SNR.
A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output. In practice, m is usually chosen to be greater than unity. In some literature, the name sensitivity is used for this concept.
An RF chain is a cascade of electronic components and sub-units which may include amplifiers, filters, mixers, attenuators and detectors. It can take many forms, for example, as a wide-band receiver-detector for electronic warfare (EW) applications, as a tunable narrow-band receiver for communications purposes, as a repeater in signal distribution systems, or as an amplifier and up-converters for a transmitter-driver. In this article, the term RF covers the frequency range "medium Frequencies" up to "microwave Frequencies", i.e. from 100 kHz to 20 GHz.
This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22. (in support of MIL-STD-188).