Unijunction transistor

Last updated
Unijunction Transistor
Unijunction transistors.jpg
Unijunction transistors
Type active
Invented General Electric (1953)
Pin configuration B2, B1, emitter
Electronic symbol
IEEE 315-1975 (1993) 8.6.8.svg IEEE 315-1975 (1993) 8.6.9.svg
UJT N and P symbol [1]

A unijunction transistor (UJT) is a three-lead electronic semiconductor device with only one junction. It acts exclusively as an electrically controlled switch.

Contents

The UJT is not used as a linear amplifier. It is used in free-running oscillators, synchronized or triggered oscillators, and pulse generation circuits at low to moderate frequencies (hundreds of kilohertz). It is widely used in the triggering circuits for silicon controlled rectifiers. In the 1960s, the low cost per unit, combined with its unique characteristic, warranted its use in a wide variety of applications like oscillators, pulse generators, saw-tooth generators, triggering circuits, phase control, timing circuits, and voltage- or current-regulated supplies. [2] The original unijunction transistor types are now considered obsolete, but a later multi-layer device, the programmable unijunction transistor, is still widely available.

Types

Graph of UJT characteristic curve, emitter-base1 voltage as a function of emitter current, showing current-controlled negative resistance (downward-sloping region) UJT caratteristica.png
Graph of UJT characteristic curve, emitter-base1 voltage as a function of emitter current, showing current-controlled negative resistance (downward-sloping region)

There are three types of unijunction transistor:

  1. The original unijunction transistor, or UJT, is a simple device that is essentially a bar of n-type semiconductor material into which p-type material has been diffused somewhere along its length, fixing the device parameter (the "intrinsic stand-off ratio"). The 2N2646 model is the most commonly used version of the UJT.
  2. The complementary unijunction transistor, or CUJT, is a bar of p-type semiconductor material into which n-type material has been diffused somewhere along its length, defining the device parameter . The 2N6114 model is one version of the CUJT.
  3. The programmable unijunction transistor, or PUT, is a multi-junction device that, with two external resistors, displays similar characteristics to the UJT. It is a close cousin to the thyristor and like the thyristor consists of four p-n layers. It has an anode and a cathode connected to the first and the last layer respectively, and a gate connected to one of the inner layers. PUTs are not directly interchangeable with conventional UJTs but perform a similar function. In a proper circuit configuration with two "programming" resistors for setting the parameter , they behave like a conventional UJT. The 2N6027, 2N6028 [3] and BRY39 models are examples of such devices.

Applications

Unijunction transistor circuits were popular in hobbyist electronics circuits in the 1960s and 1970s because they allowed simple oscillators to be built using just one active device. For example, they were used for relaxation oscillators in variable-rate strobe lights. [4] Later, as integrated circuits became more popular, oscillators such as the 555 timer IC became more commonly used.

In addition to its use as the active device in relaxation oscillators, one of the most important applications of UJTs or PUTs is to trigger thyristors (silicon controlled rectifiers (SCR), TRIACs, etc.). A DC voltage can be used to control a UJT or PUT circuit such that the "on-period" increases with an increase in the DC control voltage. This application is important for large AC current control.

UJTs can also be used to measure magnetic flux. The Hall effect modulates the voltage at the PN junction. This affects the frequency of UJT relaxation oscillators. [5] This only works with UJTs. PUTs do not exhibit this phenomenon.

Construction

Structure of a p-type UJT UJT struttura.png
Structure of a p-type UJT
UJT die: the larger contact in the centre of the crystal is the emitter, the smaller one is B1; B2 is at the bottom of the crystal Unijuction transistor KT117 (open).jpg
UJT die: the larger contact in the centre of the crystal is the emitter, the smaller one is B1; B2 is at the bottom of the crystal

The UJT has three terminals: an emitter (E) and two bases (B1 and B2) and so is sometimes known a "double-base diode". The base is formed by a lightly doped n-type bar of silicon. Two ohmic contacts B1 and B2 are attached at its ends. The emitter is of heavily-doped p-type material. The single PN junction between the emitter and the base gives the device its name. The resistance between B1 and B2 when the emitter is open-circuit is called interbase resistance. The emitter junction is usually located closer to base-2 (B2) than base-1 (B1) so that the device is not symmetrical, because a symmetrical unit does not provide optimum electrical characteristics for most of the applications.

If no potential difference exists between its emitter and either of its base leads, there is an extremely small current from B1 to B2. On the other hand, if an adequately large voltage relative to its base leads, known as the trigger voltage, is applied to its emitter, then a very large current from its emitter joins the current from B1 to B2, which creates a larger B2 output current.

The schematic diagram symbol for a unijunction transistor represents the emitter lead with an arrow, showing the direction of conventional current when the emitter-base junction is conducting a current. A complementary UJT uses a p-type base and an n-type emitter, and operates the same as the n-type base device but with all voltage polarities reversed.

The structure of a UJT is similar to that of an N-channel JFET, but p-type (gate) material surrounds the N-type (channel) material in a JFET, and the gate surface is larger than the emitter junction of UJT. A UJT is operated with the emitter junction forward-biased while the JFET is normally operated with the gate junction reverse-biased. The UJT is a current-controlled negative resistance device.

Device operation

The device has a unique characteristic in that when it is triggered, its emitter current increases regeneratively until it is restricted by the emitter power supply. It exhibits a negative resistance characteristic and so it can be employed as an oscillator.

The UJT is biased with a positive voltage between the two bases. This causes a potential drop along the length of the device. When the emitter voltage is driven approximately one diode voltage above the voltage at the point where the P diffusion (emitter) is, current will begin to flow from the emitter into the base region. Because the base region is very lightly doped, the additional current (actually charges in the base region) causes conductivity modulation, which reduces the resistance of the portion of the base between the emitter junction and the B2 terminal. This reduction in resistance means that the emitter junction is more forward biased, and so even more current is injected. Overall, the effect is a negative resistance at the emitter terminal. This is what makes the UJT useful, especially in simple oscillator circuits.

Invention

The unijunction transistor was invented as a byproduct of research on germanium tetrode transistors at General Electric. [6] It was patented in 1953. Commercially, silicon devices were manufactured. [7] A common part number is 2N2646.

Related Research Articles

<span class="mw-page-title-main">Diode</span> Two-terminal electronic component

A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction and high resistance in the other.

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

<span class="mw-page-title-main">Semiconductor device</span> Electronic component that exploits the electronic properties of semiconductor materials

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum or as free electrons and ions through an ionized gas.

<span class="mw-page-title-main">MOSFET</span> Type of field-effect transistor

The metal–oxide–semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The term metal–insulator–semiconductor field-effect transistor (MISFET) is almost synonymous with MOSFET. Another near-synonym is insulated-gate field-effect transistor (IGFET).

<span class="mw-page-title-main">JFET</span> Type of field-effect transistor

The junction field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifiers.

<span class="mw-page-title-main">Bipolar junction transistor</span> Transistor that uses both electrons and holes as charge carriers

A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor (FET), uses only one kind of charge carrier. A bipolar transistor allows a small current injected at one of its terminals to control a much larger current flowing between the terminals, making the device capable of amplification or switching.

<span class="mw-page-title-main">Insulated-gate bipolar transistor</span> Type of solid state switch

An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily forming an electronic switch. It was developed to combine high efficiency with fast switching. It consists of four alternating layers (P–N–P–N) that are controlled by a metal–oxide–semiconductor (MOS) gate structure.

<span class="mw-page-title-main">Thyristor</span> Type of solid state switch

A thyristor is a solid-state semiconductor device with four layers of alternating P- and N-type materials used for high-power applications. It acts as a bistable switch. There are two designs, differing in what triggers the conducting state. In a three-lead thyristor, a small current on its gate lead controls the larger current of the anode-to-cathode path. In a two-lead thyristor, conduction begins when the potential difference between the anode and cathode themselves is sufficiently large. The thyristor continues conducting until the voltage across the device is reverse-biased or the voltage is removed, or through the control gate signal on newer types.

<span class="mw-page-title-main">Varicap</span> Type of diode

In electronics, a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction.

<span class="mw-page-title-main">Silicon controlled rectifier</span> Four-layer solid-state current-controlling device

A silicon controlled rectifier or semiconductor controlled rectifier is a four-layer solid-state current-controlling device. The name "silicon controlled rectifier" is General Electric's trade name for a type of thyristor. The principle of four-layer p–n–p–n switching was developed by Moll, Tanenbaum, Goldey, and Holonyak of Bell Laboratories in 1956. The practical demonstration of silicon controlled switching and detailed theoretical behavior of a device in agreement with the experimental results was presented by Dr Ian M. Mackintosh of Bell Laboratories in January 1958. The SCR was developed by a team of power engineers led by Gordon Hall and commercialized by Frank W. "Bill" Gutzwiller in 1957.

<span class="mw-page-title-main">TRIAC</span> Solid-state semiconductor device

A TRIAC is a three-terminal electronic component that conducts current in either direction when triggered. The term TRIAC is a genericised trademark.

<span class="mw-page-title-main">Tunnel diode</span> Diode that works using quantum tunneling effect

A tunnel diode or Esaki diode is a type of semiconductor diode that has effectively "negative resistance" due to the quantum mechanical effect called tunneling. It was invented in August 1957 by Leo Esaki when working at Tokyo Tsushin Kogyo, now known as Sony. In 1973, Esaki received the Nobel Prize in Physics for experimental demonstration of the electron tunneling effect in semiconductors. Robert Noyce independently devised the idea of a tunnel diode while working for William Shockley, but was discouraged from pursuing it. Tunnel diodes were first manufactured by Sony in 1957, followed by General Electric and other companies from about 1960, and are still made in low volume today.

A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics. Such a device is also called a power device or, when used in an integrated circuit, a power IC.

A MESFET is a field-effect transistor semiconductor device similar to a JFET with a Schottky (metal–semiconductor) junction instead of a p–n junction for a gate.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Power MOSFET</span> MOSFET that can handle significant power levels

A power MOSFET is a specific type of metal–oxide–semiconductor field-effect transistor (MOSFET) designed to handle significant power levels. Compared to the other power semiconductor devices, such as an insulated-gate bipolar transistor (IGBT) or a thyristor, its main advantages are high switching speed and good efficiency at low voltages. It shares with the IGBT an isolated gate that makes it easy to drive. They can be subject to low gain, sometimes to a degree that the gate voltage needs to be higher than the voltage under control.

<span class="mw-page-title-main">Shockley diode</span> Four layer semiconductor diode

The Shockley diode is a four-layer semiconductor diode, which was one of the first semiconductor devices invented. It is a PNPN diode with alternating layers of P-type and N-type material. It is equivalent to a thyristor with a disconnected gate. Shockley diodes were manufactured and marketed by Shockley Semiconductor Laboratory in the late 1950s. The Shockley diode has a negative resistance characteristic. It was largely superseded by the diac.

A QUADRAC is a special type of thyristor which combines a DIAC and a TRIAC in a single package. The DIAC is the triggering device for the TRIAC. Thyristors are four-layer (PNPN) semiconductor devices that act as switches, rectifiers or voltage regulators in a variety of applications. When triggered, thyristors turn on and become low-resistance current paths. They remain so even after the trigger is removed, and until the current is reduced to a certain level. Diacs are bi-directional diodes that switch AC voltages and trigger triacs or silicon-controlled rectifiers (SCRs). Except for a small leakage current, diacs do not conduct until the breakover voltage is reached. Triacs are three-terminal, silicon devices that function as two SCRs configured in an inverse, parallel arrangement. They provide load current during both halves of the AC supply voltage. By combining the functions of diacs and triacs, QUADRACs eliminate the need to buy and assemble discrete parts.

<span class="mw-page-title-main">Programmable unijunction transistor</span>

A programmable unijunction transistor (PUT) is a three-lead electronic semiconductor device which is similar in its characteristics to a unijunction transistor, except that its behavior can be controlled using external components. In a unijunction transistor, the base region is divided into two parts by the emitter. The two parts of the base form a voltage divider, which sets the operating point of the UJT. That voltage divider can be programmed with two physical resistors connected to the gate terminal of the PUT. This allows the designer some control over the operating point of the PUT.

<span class="mw-page-title-main">Field-effect transistor</span> Type of transistor

The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

References

  1. https://saliterman.umn.edu/sites/saliterman.dl.umn.edu/files/general/solid_state_power_switching.pdf Page 12
  2. J. F. Cleary (ed.), General Electric Transistor Manual, General Electric, 1964 Chapter 13 "Unijunction Transistor Circuits"
  3. 2N6027, 2N6028 data sheet by ON Semiconductor, at farnell.com
  4. Ronald M. Benrey (October 1964). "A Repeating Flash You Can Build". Popular Science. 185 (4): 132–136.
  5. Agrawal, S. L.; Saha, D. P.; Swami, R.; Singh, R. P. (23 April 1987). "Digital magnetic fluxmeter using unijunction transistor probe". International Journal of Electronics. 63 (6): 905–910. doi:10.1080/00207218708939196.
  6. Jack Ward (2005). "Transistor Museum Oral History Suran Index GE Unijunction Transistors". SemiconductorMuseum.com. Retrieved April 10, 2017.
  7. "General Electric History - Transistor History". Google.com. Retrieved April 10, 2017.