A switched capacitor (SC) is an electronic circuit that implements a function by moving charges into and out of capacitors when electronic switches are opened and closed. Usually, non-overlapping clock signals are used to control the switches, so that not all switches are closed simultaneously. Filters implemented with these elements are termed switched-capacitor filters, which depend only on the ratios between capacitances and the switching frequency, and not on precise resistors. This makes them much more suitable for use within integrated circuits, where accurately specified resistors and capacitors are not economical to construct, but accurate clocks and accurate relative ratios of capacitances are economical. [1]
SC circuits are typically implemented using metal–oxide–semiconductor (MOS) technology, with MOS capacitors and MOS field-effect transistor (MOSFET) switches, and they are commonly fabricated using the complementary MOS (CMOS) process. Common applications of MOS SC circuits include mixed-signal integrated circuits, digital-to-analog converter (DAC) chips, analog-to-digital converter (ADC) chips, pulse-code modulation (PCM) codec-filters, and PCM digital telephony. [2]
The simplest switched-capacitor (SC) circuit is made of one capacitor and two switches S1 and S2 which alternatively connect the capacitor to either in or out at a switching frequency of .
Recall that Ohm's law can express the relationship between voltage, current, and resistance as:
The following equivalent resistance calculation will show how during each switching cycle, this switched-capacitor circuit transfers an amount of charge from in to out such that it behaves according to a similar linear current–voltage relationship with
By definition, the charge on any capacitor with a voltage between its plates is:
Therefore, when S1 is closed while S2 is open, the charge stored in the capacitor will be:
assuming is an ideal voltage source.
When S2 is closed (S1 is open - they are never both closed at the same time), some of that charge is transferred out of the capacitor. Exactly how much charge gets transferred can't be determined without knowing what load is attached to the output. However, by definition, the charge remaining on capacitor can be expressed in terms of the unknown variable :
Thus, the charge transferred from in to out during one switching cycle is:
This charge is transferred at a rate of . So the average electric current (rate of transfer of charge per unit time) from in to out is:
The voltage difference from in to out can be written as:
Finally, the current–voltage relationship from in to out can be expressed with the same form as Ohm's law, to show that this switched-capacitor circuit simulates a resistor with an equivalent resistance of:
This circuit is called a parallel resistor simulation because in and out are connected in parallel and not directly coupled. Other types of SC simulated resistor circuits are bilinear resistor simulation, series resistor simulation, series-parallel resistor simulation, and parasitic-insensitive resistor simulation.
Charge is transferred from in to out as discrete pulses, not continuously. This transfer approximates the equivalent continuous transfer of charge of a resistor when the switching frequency is sufficiently higher (≥100x) than the bandlimit of the input signal.
The SC circuit modeled here using ideal switches with zero resistance does not suffer from the ohmic heating energy loss of a regular resistor, and so ideally could be called a loss free resistor. However real switches have some small resistance in their channel or p–n junctions, so power is still dissipated.
Because the resistance inside electric switches is typically much smaller than the resistances in circuits relying on regular resistors, SC circuits can have substantially lower Johnson–Nyquist noise. However, harmonics of the switching frequency may be manifested as high frequency noise that may need to be attenuated with a low-pass filter.
SC simulated resistors also have the benefit that their equivalent resistance can be adjusted by changing the switching frequency (i.e., it is a programmable resistance) with a resolution limited by the resolution of the switching period. Thus online or runtime adjustment can be done by controlling the oscillation of the switches (e.g. using an configurable clock output signal from a microcontroller).
SC simulated resistors are used as a replacement for real resistors in integrated circuits because it is easier to fabricate reliably with a wide range of values and can take up much less silicon area.
This same circuit can be used in discrete time systems (such as ADCs) as a sample and hold circuit. During the appropriate clock phase, the capacitor samples the analog voltage through switch S1 and in the second phase presents this held sampled value through switch S2 to an electronic circuit for processing.
Electronic filters consisting of resistors and capacitors can have their resistors replaced with equivalent switched-capacitor simulated resistors, allowing the filter to be manufactured using only switches and capacitors without relying on real resistors.
Switched-capacitor simulated resistors can replace the input resistor in an op amp integrator to provide accurate voltage gain and integration.
One of the earliest of these circuits is the parasitic-sensitive integrator developed by the Czech engineer Bedrich Hosticka. [3]
Denote by the switching period. In capacitors,
Then, when S1 opens and S2 closes (they are never both closed at the same time), we have the following:
1) Because has just charged:
2) Because the feedback cap, , is suddenly charged with that much charge (by the op amp, which seeks a virtual short circuit between its inputs):
Now dividing 2) by :
And inserting 1):
This last equation represents what is going on in - it increases (or decreases) its voltage each cycle according to the charge that is being "pumped" from (due to the op-amp).
However, there is a more elegant way to formulate this fact if is very short. Let us introduce and and rewrite the last equation divided by dt:
Therefore, the op-amp output voltage takes the form:
This is the same formula as the op amp inverting integrator where the resistance is replaced by a SC simulated resistor with an equivalent resistance of:
This switched-capacitor circuit is called "parasitic-sensitive" because its behavior is significantly affected by parasitic capacitances, which will cause errors when parasitic capacitances can't be controlled. "Parasitic insensitive" circuits try to overcome this.
The delaying parasitic insensitive integrator[ clarification needed ] has a wide use in discrete time electronic circuits such as biquad filters, anti-alias structures, and delta-sigma data converters. This circuit implements the following z-domain function:
One useful characteristic of switched-capacitor circuits is that they can be used to perform many circuit tasks at the same time, which is difficult with non-discrete time components (i.e. analog electronics).[ clarification needed ] The multiplying digital to analog converter (MDAC) is an example as it can take an analog input, add a digital value to it, and multiply this by some factor based on the capacitor ratios. The output of the MDAC is given by the following:
The MDAC is a common component in modern pipeline analog to digital converters as well as other precision analog electronics and was first created in the form above by Stephen Lewis and others at Bell Laboratories. [4]
Switched-capacitor circuits are analysed by writing down charge conservation equations, as in this article, and solving them with a computer algebra tool. For hand analysis and for getting more insight into the circuits, it is also possible to do a Signal-flow graph analysis, with a method that is very similar for switched-capacitor and continuous-time circuits. [5]
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when an electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.
A high-pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The amount of attenuation for each frequency depends on the filter design. A high-pass filter is usually modeled as a linear time-invariant system. It is sometimes called a low-cut filter or bass-cut filter in the context of audio engineering. High-pass filters have many uses, such as blocking DC from circuitry sensitive to non-zero average voltages or radio frequency devices. They can also be used in conjunction with a low-pass filter to produce a band-pass filter.
A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.
Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise is proportional to absolute temperature, so some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to improve their signal-to-noise ratio. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.
A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.
The 555 timer IC is an integrated circuit used in a variety of timer, delay, pulse generation, and oscillator applications. It is one of the most popular timing ICs due to its flexibility and price. Derivatives provide two or four timing circuits in one package. The design was first marketed in 1972 by Signetics and used bipolar junction transistors. Since then, numerous companies have made the original timers and later similar low-power CMOS timers. In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".
The RC time constant, denoted τ, the time constant of a resistor–capacitor circuit, is equal to the product of the circuit resistance and the circuit capacitance :
A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.
This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.
Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices.
Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.
Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.
The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.