A digital potentiometer (also called a resistive digital-to-analog converter, [1] or informally a digipot) is a digitally-controlled electronic component that mimics the analog functions of a potentiometer. It is often used for trimming and scaling analog signals by microcontrollers.
A digital potentiometer is built either from a resistor ladder integrated circuit or a digital-to-analog converter although a resistor ladder construction is the more common.[ citation needed ] Every step on the resistor ladder has its own switch which can connect this step to the output terminal of the potentiometer. The selected step on the ladder determines the resistance ratio of the digital potentiometer. The number of steps is normally indicated with a bit value e.g. 8 bits equals 256 steps; 8 bits is the most common, but resolutions between 5 and 10 bits (32 to 1024 steps) are available. [2] A digital potentiometer uses protocols like I²C or a Serial Peripheral Interface bus for signalling; some use simpler up/down protocols. Typical uses of digital potentiometers are in circuits requiring gain control of amplifiers (frequently instrumentation amplifiers), small-signal audio-balancing, and offset adjustment.
The resistor material is usually polysilicon or thin-film . [3]
Most digital potentiometers use only volatile memory, which means they forget their position when they are powered down (on power up they will report a default value, often their midpoint value) - when these are used, their last position may be stored by the microcontroller or FPGA to which they are interfaced. Some digipots do include their own non-volatile storage, [4] so their default reading on power up will be the same as they showed before they were powered down. [5]
While quite similar to normal potentiometers, digital potentiometers are constrained by current limit in the range of tens of milliamperes. Also, most digital potentiometers limit the voltage range on the two input terminals (of the resistor) to the digital supply range (e.g. 0–5 VDC), so additional circuitry may be required to replace a conventional potentiometer, (although digital potentiometers with separate dual supply analog voltages are also available.) [6] Further, instead of the seemingly continuous control that can be obtained from a multiturn resistive potentiometer, digital potentiometers have discrete steps in resistance.
Another constraint is that special logic is often required to check for zero crossing of an analog AC signal to allow the resistance value to be changed without causing an audible click in the output for audio amplifiers. (Schematic needed)
Volatile digital potentiometers also differ from electro-mechanical ones in that on power up, the resistance will default to (possibly) a different value after a power cycle. Similarly, their resistance is only valid when the correct DC supply voltage is present. When voltage is removed, the resistance between the two end points and the (nominal) wiper are undefined. In an operational amplifier circuit, the off-state impedance of a real potentiometer can help stabilize the DC operating point of the circuit during the power-up stage. This may not be the case when a digital potentiometer is used.
Both electro-mechanical and digital potentiometers generally have poor tolerances (typically ±20%), [7] poor temperature coefficients [8] (up to many hundreds of ppm per degree C), [8] and a stop resistance that is typically about 0.5-1% of the full scale resistance. Note that stop resistance is the residual resistance when the terminal to wiper resistance is set to the minimum value.[ citation needed ]
With a digital potentiometer, the resistance might be depended on supply voltage. [7]
Digital potentiometer have a limited band width due to parasitic capacitance in device. Parts with lower end-to-end resistance typically have a greater band width.
The transmission gate/switching element in the digital potentiometer cause harmonic distortions.
A multiplying DAC used as a digital potentiometer can eliminate most of these limitations. [9] Typically a signal span of +15V to -15V is possible, with 16 bit control, i.e. 65535 discrete set points, and drift and non-linearity are negligible. However a DAC has to be initialised each time the system is powered on, which is typically done by software in an embedded microcontroller. A multiplying DAC can not be directly used as a rheostat (2 wire connection), but in that mode a digipot performs badly anyway, due to its temperature coefficient and resistance tolerance.[ citation needed ]
An analog computer or analogue computer is a type of computation machine (computer) that uses physical phenomena such as electrical, mechanical, or hydraulic quantities behaving according to the mathematical principles in question to model the problem being solved. In contrast, digital computers represent varying quantities symbolically and by discrete values of both time and amplitude.
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.
A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit.
In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.
A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or rheostat.
In electronics, a digital-to-analog converter is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function.
In digital logic, an inverter or NOT gate is a logic gate which implements logical negation. It outputs a bit opposite of the bit that is put into it. The bits are typically implemented as two differing voltage levels.
The MSP430 is a mixed-signal microcontroller family from Texas Instruments, first introduced on 14 February 1992. Built around a 16-bit CPU, the MSP430 was designed for low power consumption, embedded applications and low cost.
In electronics, an analog multiplier is a device that takes two analog signals and produces an output which is their product. Such circuits can be used to implement related functions such as squares, and square roots.
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
A variable-gain (VGA) or voltage-controlled amplifier (VCA) is an electronic amplifier that varies its gain depending on a control voltage.
An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.
A resistor ladder is an electrical circuit made from repeating units of resistors, in specific configurations.
A flash ADC is a type of analog-to-digital converter that uses a linear voltage ladder with a comparator at each "rung" of the ladder to compare the input voltage to successive reference voltages. Often these reference ladders are constructed of many resistors; however, modern implementations show that capacitive voltage division is also possible. The output of these comparators is generally fed into a digital encoder, which converts the inputs into a binary value.
An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical circuit. For a circuit to be referred to as electronic, rather than electrical, generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another.
The Kelvin-Varley voltage divider, named after its inventors William Thomson, 1st Baron Kelvin and Cromwell Fleetwood Varley, is an electronic circuit used to generate an output voltage as a precision ratio of an input voltage, with several decades of resolution. In effect, the Kelvin–Varley divider is an electromechanical precision digital-to-analog converter.
A logarithmic resistor ladder is an electronic circuit, composed of a series of resistors and switches, designed to create an attenuation from an input to an output signal, where the logarithm of the attenuation ratio is proportional to a binary number that represents the state of the switches.
The following outline is provided as an overview of and topical guide to electronics:
A voltage-controlled resistor (VCR) is a three-terminal active device with one input port and two output ports. The input-port voltage controls the value of the resistor between the output ports. VCRs are most often built with field-effect transistors (FETs). Two types of FETs are often used: the JFET and the MOSFET. There are both floating voltage-controlled resistors and grounded voltage-controlled resistors. Floating VCRs can be placed between two passive or active components. Grounded VCRs, the more common and less complicated design, require that one port of the voltage-controlled resistor be grounded.