Memistor

Last updated
Memistor Memistor schema.png
Memistor

A memistor is a nanoelectric circuitry element used in parallel computing memory technology. Essentially, a resistor with memory able to perform logic operations and store information, it is a three-terminal implementation of the memristor. It is a possible future technology replacing flash and DRAM.

Contents

History

While the memristor is defined in terms of a two-terminal circuit element, there was an implementation of a three-terminal device called a memistor developed by Bernard Widrow in 1960. Memistors formed basic components of a neural network architecture called ADALINE developed by Widrow. [1] [2] The memistor was also used in MADALINE.

Essence

In one of the technical reports [3] the memistor was described as follows:

Like the transistor, the memistor is a 3-terminal element. The conductance between two of the terminals is controlled by the time integral of the current in the third, rather than its instantaneous value as in the transistor. Reproducible elements have been made which are continuously variable (thousands of possible analog storage levels), and which typically vary in resistance from 100 ohms to 1 ohm, and cover this range in about 10 seconds with several milliamperes of plating current. Adaptation is accomplished by direct current while sensing the neuron logical structure is accomplished nondestructively by passing alternating currents through the arrays of memistor cells.

Since the conductance was described as being controlled by the time integral of current as in Chua's theory of the memristor, the memistor of Widrow may be considered as a form of memristor having three instead of two terminals. However, one of the main limitations of Widrow's memistors was that they were made from an electroplating cell rather than as a solid-state circuit element. Solid-state circuit elements were required to achieve the scalability of the integrated circuit which was gaining popularity around the same time as the invention of Widrow's memistor.

An article on ArXiv suggests that the floating-gate MOSFET as well as other 3-terminal "memory transistors" may be modeled using dynamical systems equations in a similar fashion to the memristive systems of memristors. [4]

See also

Related Research Articles

Transistor Basic electronics component

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases infinitesimal elements are used to model the network, in a distributed-element model.

Analogue switch electronic component that behaves in a similar way to a relay, but has no moving parts

The analogueswitch, also called the bilateral switch, is an electronic component that behaves in a similar way to a relay, but has no moving parts. The switching element is normally a pair of MOSFET transistors, one an N-channel device, the other a P-channel device. The device can conduct analog or digital signals in either direction when on and isolates the switched terminals when off. Analogue switches are usually manufactured as integrated circuits in packages containing multiple switches. These include the 4016 and 4066 from the 4000 series.

An artificial neuron is a mathematical function conceived as a model of biological neurons, a neural network. Artificial neurons are elementary units in an artificial neural network. The artificial neuron receives one or more inputs and sums them to produce an output. Usually each input is separately weighted, and the sum is passed through a non-linear function known as an activation function or transfer function. The transfer functions usually have a sigmoid shape, but they may also take the form of other non-linear functions, piecewise linear functions, or step functions. They are also often monotonically increasing, continuous, differentiable and bounded. The thresholding function has inspired building logic gates referred to as threshold logic; applicable to building logic circuits resembling brain processing. For example, new devices such as memristors have been extensively used to develop such logic in recent times.

Neuromorphic engineering, also known as neuromorphic computing, is a concept developed by Carver Mead, in the late 1980s, describing the use of very-large-scale integration (VLSI) systems containing electronic analog circuits to mimic neuro-biological architectures present in the nervous system. In recent times, the term neuromorphic has been used to describe analog, digital, mixed-mode analog/digital VLSI, and software systems that implement models of neural systems. The implementation of neuromorphic computing on the hardware level can be realized by oxide-based memristors, spintronic memories, threshold switches, and transistors.

Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM and C-RAM or CRAM is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In the older generation of PCM, heat produced by the passage of an electric current through a heating element generally made of TiN was used to either quickly heat and quench the glass, making it amorphous, or to hold it in its crystallization temperature range for some time, thereby switching it to a crystalline state. PCM also has the ability to achieve a number of distinct intermediary states, thereby having the ability to hold multiple bits in a single cell, but the difficulties in programming cells in this way has prevented these capabilities from being implemented in other technologies with the same capability.

Electronic component basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components.

A current–voltage characteristic or I–V curve is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference across it.

Chuas circuit electronic circuit to exhibits chaos theory behaviour

Chua's circuit is a simple electronic circuit that exhibits classic chaotic behavior. This means roughly that it is a "nonperiodic oscillator"; it produces an oscillating waveform that, unlike an ordinary electronic oscillator, never "repeats". It was invented in 1983 by Leon O. Chua, who was a visitor at Waseda University in Japan at that time. The ease of construction of the circuit has made it a ubiquitous real-world example of a chaotic system, leading some to declare it "a paradigm for chaos".

The floating-gate MOSFET (FGMOS), also known as a floating-gate transistor, is a type of MOSFET where the gate is electrically isolated, creating a floating node in DC, and a number of secondary gates or inputs are deposited above the floating gate (FG) and are electrically isolated from it. These inputs are only capacitively connected to the FG. Since the FG is completely surrounded by highly resistive material, the charge contained in it remains unchanged for long periods of time. Usually Fowler-Nordheim tunneling and hot-carrier injection mechanisms are used to modify the amount of charge stored in the FG.

Hot carrier injection (HCI) is a phenomenon in solid-state electronic devices where an electron or a “hole” gains sufficient kinetic energy to overcome a potential barrier necessary to break an interface state. The term "hot" refers to the effective temperature used to model carrier density, not to the overall temperature of the device. Since the charge carriers can become trapped in the gate dielectric of a MOS transistor, the switching characteristics of the transistor can be permanently changed. Hot-carrier injection is one of the mechanisms that adversely affects the reliability of semiconductors of solid-state devices.

ADALINE

ADALINE is an early single-layer artificial neural network and the name of the physical device that implemented this network. The network uses memistors. It was developed by Professor Bernard Widrow and his graduate student Ted Hoff at Stanford University in 1960. It is based on the McCulloch–Pitts neuron. It consists of a weight, a bias and a summation function.

Resistive random-access memory is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor. This technology bears some similarities to conductive-bridging RAM (CBRAM), and phase-change memory (PCM).

The programmable metallization cell, or PMC, is a non-volatile computer memory developed at Arizona State University. PMC, a technology developed to replace the widely used flash memory, providing a combination of longer lifetimes, lower power, and better memory density. Infineon Technologies, who licensed the technology in 2004, refers to it as conductive-bridging RAM, or CBRAM. CBRAM became a registered trademark of Adesto Technologies in 2011. NEC has a variant called "Nanobridge" and Sony calls their version "electrolytic memory".

A memristor is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fundamental electrical components which comprises also the resistor, capacitor and inductor. No physical memristor component has yet been demonstrated.

A physical neural network is a type of artificial neural network in which an electrically adjustable resistance material is used to emulate the function of a neural synapse. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches which simulate neural networks. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.

NOMFET is a nanoparticle organic memory field-effect transistor. The transistor is designed to mimic the feature of the human synapse known as plasticity, or the variation of the speed and strength of the signal going from neuron to neuron. The device uses gold nano-particles of about 5—20 nm set with pentacene to emulate the change in voltages and speed within the signal. This device uses charge trapping/detrapping in an array of gold nanoparticules (NPs) at the SiO2/pentacene interface to design a SYNAPSTOR (synapse transistor) mimicking the dynamic plasticity of a biological synapse. This device (memristor-like) mimics short-term plasticity (STP) and temporal correlation plasticity (STDP, spike-timing dependent plasticity), two "functions" at the basis of learning processes. A compact model was developed, and these organic synapstors were used to demonstrate an associative memory, which can be trained to present a pavlovian response. A recent report showed that these organic synapse-transistors (synapstor) are working at 1 volt and with a plasticity typical response time in the range 100-200 ms. The device also works in contact with an electrolyte (EGOS : electrolyte gated organic synapstor) and can be interfaced with biologic neurons.

The following outline is provided as an overview of and topical guide to electronics:

Field-effect transistor transistor that uses an electric field to control its electrical behaviour

The field-effect transistor (FET) is a type of transistor which uses an electric field to control the flow of current. FETs are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

Memory cell (computing) part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

References

  1. Youtube: widrowlms: Science in Action
  2. 1960: An adaptive "ADALINE" neuron using chemical "memistors"
  3. Widrow, B.; Pierce, W. H.; Angell, J.B. (1961), "Birth, Life, and Death in Microelectronic Systems" (PDF), Technical Report No. 1552-2/1851-1
  4. Mouttet, Blaise (2010). "Memristive Systems Analysis of 3-Terminal Devices". arXiv: 1012.5124 [cond-mat.mes-hall].