WikiMili The Free Encyclopedia

The **single-ended primary-inductor converter** (**SEPIC**) is a type of DC/DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the control transistor (S1).

A **DC-to-DC converter** is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

**Voltage**, **electric potential difference**, **electric pressure **or **electric tension** is the difference in electric potential between two points. The difference in electric potential between two points in a static electric field is defined as the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named *volt*. In SI units, work per unit charge is expressed as joules per coulomb, where 1 volt = 1 joule per 1 coulomb. The official SI definition for *volt* uses power and current, where 1 volt = 1 watt per 1 ampere. This definition is equivalent to the more commonly used 'joules per coulomb'. Voltage or electric potential difference is denoted symbolically by ∆*V*, but more often simply as *V*, for instance in the context of Ohm's or Kirchhoff's circuit laws.

A **duty cycle** or **power cycle** is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a formula, a duty cycle (%) may be expressed as:

- Circuit operation
- Continuous mode
- Discontinuous mode
- Reliability and efficiency
- Disadvantages
- See also
- References

A SEPIC is essentially a boost converter followed by an inverted buck-boost converter, therefore it is similar to a traditional buck-boost converter, but has advantages of having non-inverted output (the output has the same voltage polarity as the input), using a series capacitor to couple energy from the input to the output (and thus can respond more gracefully to a short-circuit output), and being capable of true shutdown: when the switch S1 is turned off enough, the output (*V*_{0}) drops to 0 V, following a fairly hefty transient dump of charge.^{ [1] }

A **boost converter** is a DC-to-DC power converter that steps up voltage from its input (supply) to its output (load). It is a class of switched-mode power supply (SMPS) containing at least two semiconductors and at least one energy storage element: a capacitor, inductor, or the two in combination. To reduce voltage ripple, filters made of capacitors are normally added to such a converter's output and input.

SEPICs are useful in applications in which a battery voltage can be above and below that of the regulator's intended output. For example, a single lithium ion battery typically discharges from 4.2 volts to 3 volts; if other components require 3.3 volts, then the SEPIC would be effective.

The schematic diagram for a basic SEPIC is shown in Figure 1. As with other switched mode power supplies (specifically DC-to-DC converters), the SEPIC exchanges energy between the capacitors and inductors in order to convert from one voltage to another. The amount of energy exchanged is controlled by switch S1, which is typically a transistor such as a MOSFET. MOSFETs offer much higher input impedance and lower voltage drop than bipolar junction transistors (BJTs), and do not require biasing resistors as MOSFET switching is controlled by differences in voltage rather than a current, as with BJTs.

A **circuit diagram** is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations. The presentation of the interconnections between circuit components in the schematic diagram does not necessarily correspond to the physical arrangements in the finished device.

A **capacitor** is a passive two-terminal electronic component that stores electrical energy in an electric field. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit. The capacitor was originally known as a **condenser** or **condensator**. The original name is still widely used in many languages, but not commonly in English.

An **inductor**, also called a **coil**, **choke**, or **reactor**, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil around a core.

A SEPIC is said to be in continuous-conduction mode ("continuous mode") if the current through the inductor L1 never falls to zero. During a SEPIC's steady-state operation, the average voltage across capacitor C1 (*V*_{C1}) is equal to the input voltage (*V*_{in}). Because capacitor C1 blocks direct current (DC), the average current through it (*I*_{C1}) is zero, making inductor L2 the only source of DC load current. Therefore, the average current through inductor L2 (*I*_{L2}) is the same as the average load current and hence independent of the input voltage.

An **electric current** is the rate of flow of electric charge past a point or region. An electric current is said to exist when there is a net flow of electric charge through a region. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).

Looking at average voltages, the following can be written:

Because the average voltage of *V*_{C1} is equal to *V*_{IN}, *V*_{L1} = −*V*_{L2}. For this reason, the two inductors can be wound on the same core, which begins to resemble a Flyback converter, the most basic of the transformer-isolated SMPS topologies. Since the voltages are the same in magnitude, their effects on the mutual inductance will be zero, assuming the polarity of the windings is correct. Also, since the voltages are the same in magnitude, the ripple currents from the two inductors will be equal in magnitude.

The **flyback** converter is used in both AC/DC and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation. When driving for example a plasma lamp or a voltage multiplier the rectifying diode of the boost converter is left out and the device is called a flyback transformer.

The average currents can be summed as follows (average capacitor currents must be zero):

When switch S1 is turned on, current *I*_{L1} increases and the current *I*_{L2} goes more negative. (Mathematically, it decreases due to arrow direction.) The energy to increase the current *I*_{L1} comes from the input source. Since S1 is a short while closed, and the instantaneous voltage *V*_{L1} is approximately *V*_{IN}, the voltage *V*_{L2} is approximately −*V*_{C1}. Therefore, D1 is opened and the capacitor C1 supplies the energy to increase the magnitude of the current in *I*_{L2} and thus increase the energy stored in L2. I_{L} is supplied by C2. The easiest way to visualize this is to consider the bias voltages of the circuit in a d.c. state, then close S1.

When switch S1 is turned off, the current *I*_{C1} becomes the same as the current *I*_{L1}, since inductors do not allow instantaneous changes in current. The current *I*_{L2} will continue in the negative direction, in fact it never reverses direction. It can be seen from the diagram that a negative *I*_{L2} will add to the current *I*_{L1} to increase the current delivered to the load. Using Kirchhoff's Current Law, it can be shown that *I*_{D1} = *I*_{C1} - *I*_{L2}. It can then be concluded, that while S1 is off, power is delivered to the load from both L2 and L1. C1, however is being charged by L1 during this off cycle (as C2 by L1 and L2), and will in turn recharge L2 during the following on cycle.

Because the potential (voltage) across capacitor C1 may reverse direction every cycle, a non-polarized capacitor should be used. However, a polarized tantalum or electrolytic capacitor may be used in some cases,^{ [2] } because the potential (voltage) across capacitor C1 will not change unless the switch is closed long enough for a half cycle of resonance with inductor L2, and by this time the current in inductor L1 could be quite large.

The capacitor C_{IN} has no effect on the ideal circuit's analysis, but is required in actual regulator circuits to reduce the effects of parasitic inductance and internal resistance of the power supply.

The boost/buck capabilities of the SEPIC are possible because of capacitor C1 and inductor L2. Inductor L1 and switch S1 create a standard boost converter, which generates a voltage (*V*_{S1}) that is higher than *V*_{IN}, whose magnitude is determined by the duty cycle of the switch S1. Since the average voltage across C1 is *V*_{IN}, the output voltage (*V*_{O}) is *V*_{S1} - *V*_{IN}. If *V*_{S1} is less than double *V*_{IN}, then the output voltage will be less than the input voltage. If *V*_{S1} is greater than double *V*_{IN}, then the output voltage will be greater than the input voltage.

A SEPIC is said to be in discontinuous-conduction mode or discontinuous mode if the current through the inductor L2 is allowed to fall to zero.

The voltage drop and switching time of diode D1 is critical to a SEPIC's reliability and efficiency. The diode's switching time needs to be extremely fast in order to not generate high voltage spikes across the inductors, which could cause damage to components. Fast conventional diodes or Schottky diodes may be used.

The resistances in the inductors and the capacitors can also have large effects on the converter efficiency and output ripple. Inductors with lower series resistance allow less energy to be dissipated as heat, resulting in greater efficiency (a larger portion of the input power being transferred to the load). Capacitors with low equivalent series resistance (ESR) should also be used for C1 and C2 to minimize ripple and prevent heat build-up, especially in C1 where the current is changing direction frequently.

- Like the buck–boost converter, the SEPIC has a pulsating output current. The similar Ćuk converter does not have this disadvantage, but it can only have negative output polarity, unless the isolated Ćuk converter is used.
- Since the SEPIC converter transfers all its energy via the series capacitor, a capacitor with high capacitance and current handling capability is required.
- The fourth-order nature of the converter also makes the SEPIC converter difficult to control, making it only suitable for very slow varying applications.

A **rectifier** is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction.

A **switched-mode power supply** is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Like other power supplies, an SMPS transfers power from a DC or AC source to DC loads, such as a personal computer, while converting voltage and current characteristics. Unlike a linear power supply, the pass transistor of a switching-mode supply continually switches between low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy. A hypothetical ideal switched-mode power supply dissipates no power. Voltage regulation is achieved by varying the ratio of on-to-off time. In contrast, a linear power supply regulates the output voltage by continually dissipating power in the pass transistor. This higher power conversion efficiency is an important advantage of a switched-mode power supply. Switched-mode power supplies may also be substantially smaller and lighter than a linear supply due to the smaller transformer size and weight.

The **Ćuk converter** is a type of DC/DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is essentially a boost converter followed by a buck converter with a capacitor to couple the energy.

A **voltage multiplier** is an electrical circuit that converts AC electrical power from a lower voltage to a higher DC voltage, typically using a network of capacitors and diodes.

**Power electronics** is the application of solid-state electronics to the control and conversion of electric power.

A **voltage doubler** is an electronic circuit which charges capacitors from the input voltage and switches these charges in such a way that, in the ideal case, exactly twice the voltage is produced at the output as at its input.

In electronics, a **chopper** circuit is used to refer to numerous types of electronic switching devices and circuits used in power control and signal applications. A chopper is a device that converts fixed DC input to a variable DC output voltage directly. Essentially, a chopper is an electronic switch that is used to interrupt one signal under the control of another.

A **charge pump** is a kind of DC to DC converter that uses capacitors for energetic charge storage to raise or lower voltage. Charge-pump circuits are capable of high efficiencies, sometimes as high as 90–95%, while being electrically simple circuits.

A **buck converter** is a DC-to-DC power converter which steps down voltage from its input (supply) to its output (load). It is a class of switched-mode power supply (SMPS) typically containing at least two semiconductors and at least one energy storage element, a capacitor, inductor, or the two in combination. To reduce voltage ripple, filters made of capacitors are normally added to such a converter's output and input.

The **buck–boost converter** is a type of DC-to-DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is equivalent to a flyback converter using a single inductor instead of a transformer.

A **push–pull converter** is a type of DC-to-DC converter, a switching converter that uses a transformer to change the voltage of a DC power supply. The distinguishing feature of a push-pull converter is that the transformer primary is supplied with current from the input line by pairs of transistors in a symmetrical push-pull circuit. The transistors are alternately switched on and off, periodically reversing the current in the transformer. Therefore, current is drawn from the line during both halves of the switching cycle. This contrasts with buck-boost converters, in which the input current is supplied by a single transistor which is switched on and off, so current is only drawn from the line during half the switching cycle. During the other half the output power is supplied by energy stored in inductors or capacitors in the power supply. Push–pull converters have steadier input current, create less noise on the input line, and are more efficient in higher power applications.

**Ripple** in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.

The **commutation cell** is the basic structure in power electronics. It is composed of an electronic switch and a diode. It was traditionally referred to as a chopper, but since switching power supplies became a major form of power conversion, this new term has become more popular.

A **clamper** is an electronic circuit that fixes either the positive or the negative peak excursions of a signal to a defined value by shifting its DC value. The clamper does not restrict the peak-to-peak excursion of the signal, it moves the whole signal up or down so as to place the peaks at the reference level. A **diode clamp** consists of a diode, which conducts electric current in only one direction and prevents the signal exceeding the reference value; and a capacitor, which provides a DC offset from the stored charge. The capacitor forms a time constant with the resistor load, which determines the range of frequencies over which the clamper will be effective.

In electronics, a **split-pi topology** is a pattern of component interconnections used in a kind of power converter that can theoretically produce an arbitrary output voltage, either higher or lower than the input voltage. In practice the upper voltage output is limited to the voltage rating of components used. It is essentially a boost (step-up) converter followed by a buck (step-down) converter. The topology and use of MOSFETs make it inherently bi-directional which lends itself to applications requiring regenerative braking.

The **Vienna Rectifier** is a pulse-width modulation rectifier, invented in 1993 by Johann W. Kolar.

**Slobodan Ćuk** is a Serbian American author, inventor, business owner, electrical engineer, and professor of electrical engineering at the California Institute of Technology (Caltech). The Ćuk switched-mode DC-to-DC voltage converter is named after Slobodan Ćuk.

- Maniktala, Sanjaya.
*Switching Power Supply Design & Optimization*, McGraw-Hill, New York 2005 *SEPIC Equations and Component Ratings*, Maxim Integrated Products. Appnote 1051, 2005.*TM SEPIC converter in PFC Pre-Regulator*, STMicroelectronics. Application Note AN2435. This application note presents the basic equation of the SEPIC converter, in addition to a practical design example.

- ↑ Robert Warren, Erickson (1997).
*Fundamentals of power electronics*. Chapman & Hall. - ↑ Dongbing Zhang, Designing A Sepic Converter. May 2006, revised April 2013 Formerly National Semiconductor Application Note 1484, now Texas Instruments Application Report SNVA168E.

Wikimedia Commons has media related to . SEPIC converters |

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.