Photodetector

Last updated

A photodetector salvaged from a CD-ROM drive. The photodetector contains three photodiodes, visible in the photo (in center). CD-ROM Photodetector.jpg
A photodetector salvaged from a CD-ROM drive. The photodetector contains three photodiodes, visible in the photo (in center).

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. [1] There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

Contents

Classification

Photodetectors can be classified based on their mechanism of operation and device structure. Here are the common classifications:

Based on mechanism of operation

A commercial amplified photodetector for use in optics research USB-photodetector.png
A commercial amplified photodetector for use in optics research

Photodetectors may be classified by their mechanism for detection: [2] [ unreliable source? ] [3] [4]

Photodetectors may be used in different configurations. Single sensors may detect overall light levels. A 1-D array of photodetectors, as in a spectrophotometer or a Line scanner, may be used to measure the distribution of light along a line. A 2-D array of photodetectors may be used as an image sensor to form images from the pattern of light before it.

A photodetector or array is typically covered by an illumination window, sometimes having an anti-reflective coating.

Based on device structure

Based on device structure, photodetectors can be classified into the following categories:

  1. MSM Photodetector: A metal-semiconductor-metal (MSM) photodetector consists of a semiconductor layer sandwiched between two metal electrodes. The metal electrodes are interdigitated, forming a series of alternating fingers or grids. The semiconductor layer is typically made of materials such as silicon (Si), gallium arsenide (GaAs), indium phosphide (InP) or antimony selenide (Sb2Se3). [5] Various methods are employed together to improve its characteristics, such as manipulating the vertical structure, etching, changing the substrate, and utilizing plasmonics. [8] The best achievable efficiency is shown by Antimony Selenide photodetectors.
  2. Photodiodes: Photodiodes are the most common type of photodetectors. They are semiconductor devices with a PN junction. Incident light generates electron-hole pairs in the depletion region of the junction, producing a photocurrent. Photodiodes can be further categorized into: a. PIN Photodiodes: These photodiodes have an additional intrinsic (I) region between the P and N regions, which extends the depletion region and improves the device's performance. b. Schottky Photodiodes: In Schottky photodiodes, a metal-semiconductor junction is used instead of a PN junction. They offer high-speed response and are commonly used in high-frequency applications.
  3. Avalanche Photodiodes (APDs): APDs are specialized photodiodes that incorporate avalanche multiplication. They have a high electric field region near the PN junction, which causes impact ionization and produces additional electron-hole pairs. This internal amplification improves the detection sensitivity. APDs are widely used in applications requiring high sensitivity, such as low-light imaging and long-distance optical communication. [9]
  4. Phototransistors: Phototransistors are transistors with a light-sensitive base region. Incident light causes a change in the base current, which controls the transistor's collector current. Phototransistors offer amplification and can be used in applications that require both detection and signal amplification.
  5. Charge-Coupled Devices (CCDs): CCDs are imaging sensors composed of an array of tiny capacitors. Incident light generates charge in the capacitors, which is sequentially read and processed to form an image. CCDs are commonly used in digital cameras and scientific imaging applications.
  6. CMOS Image Sensors (CIS): CMOS image sensors are based on complementary metal-oxide-semiconductor (CMOS) technology. They integrate photodetectors and signal processing circuitry on a single chip. CMOS image sensors have gained popularity due to their low power consumption, high integration, and compatibility with standard CMOS fabrication processes.
  7. Photomultiplier Tubes (PMTs): PMTs are vacuum tube-based photodetectors. They consist of a photocathode that emits electrons when illuminated, followed by a series of dynodes that multiply the electron current through secondary emission. PMTs offer high sensitivity and are used in applications that require low-light detection, such as particle physics experiments and scintillation detectors.

These are some of the common photodetectors based on device structure. Each type has its own characteristics, advantages, and applications in various fields, including imaging, communication, sensing, and scientific research.

Properties

There are a number of performance metrics, also called figures of merit, by which photodetectors are characterized and compared [2] [3]

Subtypes

Grouped by mechanism, photodetectors include the following devices:

Photoemission or photoelectric

Semiconductor

Photovoltaic

Thermal

Photochemical

Polarization

Graphene/silicon photodetectors

A graphene/n-type silicon heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity. Graphene is coupled with silicon quantum dots (Si QDs) on top of bulk Si to form a hybrid photodetector. Si QDs cause an increase of the built-in potential of the graphene/Si Schottky junction while reducing the optical reflection of the photodetector. Both the electrical and optical contributions of Si QDs enable a superior performance of the photodetector. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">Diode</span> Two-terminal electronic component

A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction and high resistance in the other.

A PIN diode is a diode with a wide, undoped intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons.

Photoconductivity is an optical and electrical phenomenon in which a material becomes more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation.

<span class="mw-page-title-main">Photoresistor</span> Light dependent resistor

A photoresistor is a passive component that decreases resistance with respect to receiving luminosity (light) on the component's sensitive surface. The resistance of a photoresistor decreases with increase in incident light intensity; in other words, it exhibits photoconductivity. A photoresistor can be applied in light-sensitive detector circuits and light-activated and dark-activated switching circuits acting as a resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several megaohms (MΩ), while in the light, a photoresistor can have a resistance as low as a few hundred ohms. If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band. The resulting free electrons conduct electricity, thereby lowering resistance. The resistance range and sensitivity of a photoresistor can substantially differ among dissimilar devices. Moreover, unique photoresistors may react substantially differently to photons within certain wavelength bands.

<span class="mw-page-title-main">Scintillation counter</span> Instrument for measuring ionizing radiation

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

An avalanche photodiode (APD) is a highly sensitive semiconductor photodiode detector that exploits the photoelectric effect to convert light into electricity. From a functional standpoint, they can be regarded as the semiconductor analog of photomultiplier tubes. The avalanche photodiode (APD) was invented by Japanese engineer Jun-ichi Nishizawa in 1952. However, study of avalanche breakdown, microplasma defects in silicon and germanium and the investigation of optical detection using p-n junctions predate this patent. Typical applications for APDs are laser rangefinders, long-range fiber-optic telecommunication, and quantum sensing for control algorithms. New applications include positron emission tomography and particle physics.

<span class="mw-page-title-main">Opto-isolator</span> Insulates two circuits from one another while allowing signals to pass through in one direction

An opto-isolator is an electronic component that transfers electrical signals between two isolated circuits by using light. Opto-isolators prevent high voltages from affecting the system receiving the signal. Commercially available opto-isolators withstand input-to-output voltages up to 10 kV and voltage transients with speeds up to 25 kV/μs.

<span class="mw-page-title-main">Single-photon avalanche diode</span> Solid-state photodetector

A single-photon avalanche diode (SPAD) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours. As with photodiodes and APDs, a SPAD is based around a semi-conductor p-n junction that can be illuminated with ionizing radiation such as gamma, x-rays, beta and alpha particles along with a wide portion of the electromagnetic spectrum from ultraviolet (UV) through the visible wavelengths and into the infrared (IR).

<span class="mw-page-title-main">Quantum efficiency</span> Property of photosensitive devices

The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitive device, or it may refer to the TMR effect of a Magnetic Tunnel Junction.

A spectroradiometer is a light measurement tool that is able to measure both the wavelength and amplitude of the light emitted from a light source. Spectrometers discriminate the wavelength based on the position the light hits at the detector array allowing the full spectrum to be obtained with a single acquisition. Most spectrometers have a base measurement of counts which is the un-calibrated reading and is thus impacted by the sensitivity of the detector to each wavelength. By applying a calibration, the spectrometer is then able to provide measurements of spectral irradiance, spectral radiance and/or spectral flux. This data is also then used with built in or PC software and numerous algorithms to provide readings or Irradiance (W/cm2), Illuminance, Radiance (W/sr), Luminance (cd), Flux, Chromaticity, Color Temperature, Peak and Dominant Wavelength. Some more complex spectrometer software packages also allow calculation of PAR μmol/m2/s, Metamerism, and candela calculations based on distance and include features like 2- and 20-degree observer, baseline overlay comparisons, transmission and reflectance.

<span class="mw-page-title-main">Phototube</span> Light-sensitive gas-filled or vacuum tube

A phototube or photoelectric cell is a type of gas-filled or vacuum tube that is sensitive to light. Such a tube is more correctly called a 'photoemissive cell' to distinguish it from photovoltaic or photoconductive cells. Phototubes were previously more widely used but are now replaced in many applications by solid state photodetectors. The photomultiplier tube is one of the most sensitive light detectors, and is still widely used in physics research.

Indium gallium arsenide (InGaAs) is a ternary alloy of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V" compounds. InGaAs has properties intermediate between those of GaAs and InAs. InGaAs is a room-temperature semiconductor with applications in electronics and photonics.

<span class="mw-page-title-main">Infrared detector</span>

An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors).

<span class="mw-page-title-main">Image sensor</span> Device that converts images into electronic signals

An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

<span class="mw-page-title-main">Active-pixel sensor</span> Image sensor, consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells.

<span class="mw-page-title-main">Back-illuminated sensor</span>

A back-illuminated sensor, also known as backside illumination (BI) sensor, is a type of digital image sensor that uses a novel arrangement of the imaging elements to increase the amount of light captured and thereby improve low-light performance.

<span class="mw-page-title-main">Solaristor</span> Self-powered phototransistor

A solaristor is a compact two-terminal self-powered phototransistor. The two-in-one transistor plus solar cell achieves the high-low current modulation by a memresistive effect in the flow of photogenerated carriers. The term was coined by Dr Amador Perez-Tomas working in collaboration with other ICN2 researchers in 2018 when they demonstrated the concept in a ferroelectric-oxide/organic bulk heterojunction solar cell.

References

  1. Haugan, H. J.; Elhamri, S.; Szmulowicz, F.; Ullrich, B.; Brown, G. J.; Mitchel, W. C. (2008). "Study of residual background carriers in midinfrared InAs/GaSb superlattices for uncooled detector operation". Applied Physics Letters. 92 (7): 071102. Bibcode:2008ApPhL..92g1102H. doi:10.1063/1.2884264. S2CID   39187771.
  2. 1 2 Donati, S. "Photodetectors" (PDF). unipv.it. Prentice Hall. Retrieved 1 June 2016.
  3. 1 2 Yotter, R.A.; Wilson, D.M. (June 2003). "A review of photodetectors for sensing light-emitting reporters in biological systems". IEEE Sensors Journal. 3 (3): 288–303. Bibcode:2003ISenJ...3..288Y. doi:10.1109/JSEN.2003.814651.
  4. Stöckmann, F. (May 1975). "Photodetectors, their performance and their limitations". Applied Physics. 7 (1): 1–5. Bibcode:1975ApPhy...7....1S. doi:10.1007/BF00900511. S2CID   121425624.
  5. 1 2 Singh, Yogesh; Kumar, Manoj; Yadav, Reena; Kumar, Ashish; Rani, Sanju; Shashi; Singh, Preetam; Husale, Sudhir; Singh, V. N. (2022-08-15). "Enhanced photoconductivity performance of microrod-based Sb2Se3 device". Solar Energy Materials and Solar Cells. 243: 111765. doi:10.1016/j.solmat.2022.111765. ISSN   0927-0248.
  6. A. Grinberg, Anatoly; Luryi, Serge (1 July 1988). "Theory of the photon-drag effect in a two-dimensional electron gas". Physical Review B. 38 (1): 87–96. Bibcode:1988PhRvB..38...87G. doi:10.1103/PhysRevB.38.87. PMID   9945167.
  7. Bishop, P.; Gibson, A.; Kimmitt, M. (October 1973). "The performance of photon-drag detectors at high laser intensities". IEEE Journal of Quantum Electronics. 9 (10): 1007–1011. Bibcode:1973IJQE....9.1007B. doi:10.1109/JQE.1973.1077407.
  8. Singh, Yogesh; Parmar, Rahul; Srivastava, Avritti; Yadav, Reena; Kumar, Kapil; Rani, Sanju; Shashi; Srivastava, Sanjay K.; Husale, Sudhir; Sharma, Mahesh; Kushvaha, Sunil Singh; Singh, Vidya Nand (2023-06-16). "Highly Responsive Near-Infrared Si/Sb 2 Se 3 Photodetector via Surface Engineering of Silicon". ACS Applied Materials & Interfaces. 15 (25): 30443–30454. doi:10.1021/acsami.3c04043. ISSN   1944-8244.
  9. Stillman, G. E.; Wolfe, C. M. (1977-01-01), Willardson, R. K.; Beer, Albert C. (eds.), Chapter 5 Avalanche Photodiodes**This work was sponsored by the Defense Advanced Research Projects Agency and by the Department of the Air Force., Semiconductors and Semimetals, vol. 12, Elsevier, pp. 291–393, retrieved 2023-05-11
  10. Hu, Yue (1 October 2014). "Modeling sources of nonlinearity in a simple pin photodetector". Journal of Lightwave Technology. 32 (20): 3710–3720. Bibcode:2014JLwT...32.3710H. CiteSeerX   10.1.1.670.2359 . doi:10.1109/JLT.2014.2315740. S2CID   9882873.
  11. "Photo Detector Circuit". oscience.info.
  12. Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN   978-0-07-162935-5. Archived from the original on 2021-08-17. Retrieved 2021-02-24.
  13. Paschotta, Dr. Rüdiger. "Encyclopedia of Laser Physics and Technology - photodetectors, photodiodes, phototransistors, pyroelectric photodetectors, array, powermeter, noise". www.rp-photonics.com. Retrieved 2016-05-31.
  14. "PDA10A(-EC) Si Amplified Fixed Gain Detector User Manual" (PDF). Thorlabs. Retrieved 24 April 2018.
  15. "DPD80 760nm Datasheet". Resolved Instruments. Retrieved 24 April 2018.
  16. Fossum, E. R.; Hondongwa, D. B. (2014). "A Review of the Pinned Photodiode for CCD and CMOS Image Sensors". IEEE Journal of the Electron Devices Society. 2 (3): 33–43. doi: 10.1109/JEDS.2014.2306412 .
  17. "Silicon Drift Detectors" (PDF). tools.thermofisher.com. Thermo Scientific.
  18. Enss, Christian, ed. (2005). Cryogenic Particle Detection. Springer, Topics in applied physics 99. ISBN   978-3-540-20113-7.
  19. Yuan, Hongtao; Liu, Xiaoge; Afshinmanesh, Farzaneh; Li, Wei; Xu, Gang; Sun, Jie; Lian, Biao; Curto, Alberto G.; Ye, Guojun; Hikita, Yasuyuki; Shen, Zhixun; Zhang, Shou-Cheng; Chen, Xianhui; Brongersma, Mark; Hwang, Harold Y.; Cui, Yi (1 June 2015). "Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction". Nature Nanotechnology. 10 (8): 707–713. arXiv: 1409.4729 . Bibcode:2015NatNa..10..707Y. doi:10.1038/nnano.2015.112. PMID   26030655.
  20. Yu, Ting; Wang, Feng; Xu, Yang; Ma, Lingling; Pi, Xiaodong; Yang, Deren (2016). "Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors". Advanced Materials. 28 (24): 4912–4919. doi:10.1002/adma.201506140. PMID   27061073. S2CID   205267070.