Neon lamp

Last updated

NE-2 type neon lamp powered by alternating current (AC) AC powered NE-2 type neon lamp close-up.jpg
NE-2 type neon lamp powered by alternating current (AC)

A neon lamp (also neon glow lamp) is a miniature gas discharge lamp. The lamp typically consists of a small glass capsule that contains a mixture of neon and other gases at a low pressure and two electrodes (an anode and a cathode). When sufficient voltage is applied and sufficient current is supplied between the electrodes, the lamp produces an orange glow discharge. The glowing portion in the lamp is a thin region near the cathode; the larger and much longer neon signs are also glow discharges, but they use the positive column which is not present in the ordinary neon lamp. Neon glow lamps are widely used as indicator lamps in the displays of electronic instruments and appliances.

Neon Chemical element with atomic number 10

Neon is a chemical element with symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide were removed. Neon was the second of these three rare gases to be discovered and was immediately recognized as a new element from its bright red emission spectrum. The name neon is derived from the Greek word, νέον, neuter singular form of νέος (neos), meaning new. Neon is chemically inert, and no uncharged neon compounds are known. The compounds of neon currently known include ionic molecules, molecules held together by van der Waals forces and clathrates.

A Penning mixture, named after Frans Michel Penning, is a mixture of gases used in electric lighting or displaying fixtures. Although the popular phrase for the most common of these is a neon lamp, it is more efficient to have the glass tube filled not with pure neon, but with a Penning mixture, which is defined as a mixture of one inert gas with a minute amount of another gas, one that has lower ionization voltage than the main constituent.

Electrode electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte or a vacuum)

An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. The word was coined by William Whewell at the request of the scientist Michael Faraday from two Greek words: elektron, meaning amber, and hodos, a way.

Contents

History

A General Electric NE-34 glow lamp, manufactured circa 1930 NE-34 LAMP.JPG
A General Electric NE-34 glow lamp, manufactured circa 1930

Neon was discovered in 1898 by William Ramsay and Morris W. Travers. The characteristic, brilliant red color that is emitted by gaseous neon when excited electrically was noted immediately; Travers later wrote, "the blaze of crimson light from the tube told its own story and was a sight to dwell upon and never forget." [1]

William Ramsay Scottish chemist (1852–1916)

Sir William Ramsay, was a Scottish chemist who discovered the noble gases and received the Nobel Prize in Chemistry in 1904 "in recognition of his services in the discovery of the inert gaseous elements in air". After the two men identified argon, Ramsay investigated other atmospheric gases. His work in isolating argon, helium, neon, krypton and xenon led to the development of a new section of the periodic table.

Neon's scarcity precluded its prompt application for electrical lighting along the lines of Moore tubes, which used electric discharges in nitrogen. Moore tubes were commercialized by their inventor, Daniel McFarlan Moore, in the early 1900s. After 1902, Georges Claude's company, Air Liquide, was producing industrial quantities of neon as a byproduct of his air liquefaction business, and in December 1910 Claude demonstrated modern neon lighting based on a sealed tube of neon. In 1915 a U.S. patent was issued to Claude covering the design of the electrodes for neon tube lights; [2] this patent became the basis for the monopoly held in the U.S. by his company, Claude Neon Lights, through the early 1930s. [3]

Daniel McFarlan Moore American scientist

Daniel McFarlan Moore was a U.S. electrical engineer and inventor. He developed a novel light source, the "Moore lamp", and a business that produced them in the early 1900s. The Moore lamp was the first commercially viable light-source based on gas discharges instead of incandescence; it was the predecessor to contemporary neon lighting and fluorescent lighting. In his later career Moore developed a miniature neon lamp that was extensively used in electronic displays, as well as vacuum tubes that were used in early television systems.

Georges Claude Prolific inventor and industrialist. Politician and German collaborator in the Second World War

Georges Claude was a French engineer and inventor. He is noted for his early work on the industrial liquefaction of air, for the invention and commercialization of neon lighting, and for a large experiment on generating energy by pumping cold seawater up from the depths. He has been considered by some to be "the Edison of France". Claude was an active collaborator with the German occupiers of France during the Second World War, for which he was imprisoned in 1945 and stripped of his honors.

Air Liquide French multinational company which supplies industrial gases and services

Air Liquide S.A., is a French multinational company which supplies industrial gases and services to various industries including medical, chemical and electronic manufacturers. Founded in 1902, it is the world's largest supplier of industrial gases by revenues and has operations in over 80 countries. It has headquarters at the 7th arrondissement of Paris, France. Air Liquide owned the patent for Aqua-Lung until it expired.

Around 1917, Daniel Moore developed the neon lamp while working at the General Electric Company. The lamp has a very different design from the much larger neon tubes used for neon lighting. The difference in design was sufficient that a U.S. patent was issued for the lamp in 1919. [4] A Smithsonian Institution website notes, "These small, low power devices use a physical principle called coronal discharge. Moore mounted two electrodes close together in a bulb and added neon or argon gas. The electrodes would glow brightly in red or blue, depending on the gas, and the lamps lasted for years. Since the electrodes could take almost any shape imaginable, a popular application has been fanciful decorative lamps. [5]

The General Electric Company, or GEC, was a major UK-based industrial conglomerate involved in consumer and defence electronics, communications, and engineering. The company was a constituent of the FTSE 100 Index.

Neon lighting

Neon lighting consists of brightly glowing, electrified glass tubes or bulbs that contain rarefied neon or other gases. Neon lights are a type of cold cathode gas-discharge light. A neon tube is a sealed glass tube with a metal electrode at each end, filled with one of a number of gases at low pressure. A high potential of several thousand volts applied to the electrodes ionizes the gas in the tube, causing it to emit colored light. The color of the light depends on the gas in the tube. Neon lights were named for neon, a noble gas which gives off a popular orange light, but other gases and chemicals are used to produce other colors, such as hydrogen (red), helium (yellow), carbon dioxide (white), and mercury (blue). Neon tubes can be fabricated in curving artistic shapes, to form letters or pictures. They are mainly used to make dramatic, multicolored glowing signage for advertising, called neon signs, which were popular from the 1920s to the 1950s.

Glow lamps found practical use as indicators in instrument panels and in many home appliances until the widespread commercialization of light-emitting diodes (LEDs) in the 1970s. [5]

Light-emitting diode semiconductor light source

A light-emitting diode (LED) is a semiconductor light source that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. This effect is called electroluminescence. The color of the light is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

Description

Voltage vs. Current Characterisitic of a typical Neon Lamp NeonLampCharacteristicCurve.svg
Voltage vs. Current Characterisitic of a typical Neon Lamp

A small electric current (for a 5 mm bulb diameter NE-2 lamp, the quiescent current is about 400 µA), which may be AC or DC, is allowed through the tube, causing it to glow orange-red. The gas is typically a Penning mixture, 99.5% neon and 0.5% argon, which has lower striking voltage than pure neon, at a pressure of 1–20 torrs (0.13–2.67 kPa). The lamp glow discharge lights at its striking voltage. [7] The striking voltage is reduced by ambient light or radioactivity. To reduce the "dark effect", some lamps were made with a small amount of radioactive material added to the envelope to provide ionization in darkness. [7] The voltage required to sustain the discharge is significantly (upto 30%) lower than the striking voltage. This is due to the organization of positive ions near the cathode. Neon lamps operate using a low current glow discharge. Higher power devices, such as mercury-vapor lamps or metal halide lamps use a higher current arc discharge. Low pressure sodium-vapor lamps use a neon Penning mixture for warm up and can be operated as giant neon lamps if operated in a low power mode.

Electric current flow of electric charge

An electric current is a flow of electric charge. In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).

Alternating current electric voltage which periodically reverses direction; form in which electric power is delivered to businesses and residences; form of electrical energy that consumers typically use when they plug electric appliances into a wall socket

Alternating current (AC) is an electric current which periodically reverses direction, in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight. The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage.

Direct current Unidirectional flow of electric charge

Direct current (DC) is the unidirectional flow of electric charge. A battery is a good example of a DC power supply. Direct current may flow in a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.

Once the neon lamp has reached breakdown, it can support a large current flow. Because of this characteristic, electrical circuitry external to the neon lamp must limit the current through the circuit or else the current will rapidly increase until the lamp is destroyed. For indicator-sized lamps, a resistor typically limits the current. In contrast, larger sized lamps often use a specially constructed high voltage transformer with high leakage inductance or other electrical ballast to limit the available current (see neon sign).

When the current through the lamp is lower than the current for the highest-current discharge path, the glow discharge may become unstable and not cover the entire surface of the electrodes. [6] This may be a sign of aging of the indicator bulb, and is exploited in the decorative "flicker flame" neon lamps. However, while too low a current causes flickering, too high a current increases the wear of the electrodes by stimulating sputtering, which coats the internal surface of the lamp with metal and causes it to darken.

The potential needed to strike the discharge is higher than what is needed to sustain the discharge. When there is not enough current, the glow forms around only part of the electrode surface. Convective currents make the glowing areas flow upwards, not unlike the discharge in a Jacob's ladder. A photoionization effect can also be observed here, as the electrode area covered by the glow discharge can be increased by shining light at the lamp.

In comparison with incandescent light bulbs, neon lamps have much higher luminous efficacy. Incandescence is heat-driven light emission, so a large portion of the electric energy put into an incandescent bulb is converted into heat. Non-incandescent light sources such as neon light bulbs, fluorescent light bulbs, and light emitting diodes are therefore much more energy efficient than normal incandescent light bulbs. Green neon bulbs [8] can produce up to 65 lumens per watt of power input, while white neon bulbs have an efficacy of around 50 lumens per watt. In contrast, a standard incandescent light bulb only produces around 13.5 lumens per watt. [9]

Applications

Switch on a power strip, illuminated by a neon lamp Socket 5.jpg
Switch on a power strip, illuminated by a neon lamp

Visual indicator

Small neon lamps are most widely used as visual indicators in electronic equipment and appliances, due to their low power consumption, long life, and ability to operate on mains power.

Voltage surge suppression

Neon lamps are commonly used as low-voltage surge protectors, but they are generally inferior to gas discharge tube (GDT) surge protectors (which can be designed for higher voltage applications). Neon lamps have been used as an inexpensive method to protect RF receivers from voltage spikes (lamp connected to RF input and chassis ground), but they are not suitable for higher-power RF transmitters. [10]

Voltage tester

+DC (left), -DC (center), AC (right) supplied to NE-2 type neon lamps Neonlamp3.JPG
+DC (left), -DC (center), AC (right) supplied to NE-2 type neon lamps

Most small neon (indicator-sized) lamps, such as the common NE-2, have a break-down voltage of around 90  volts. When driven from a DC source, only the negatively charged electrode (cathode) will glow. When driven from an AC source, both electrodes will glow (each during alternate half cycles). These attributes make neon bulbs (with series resistors) a convenient low-cost voltage tester. By examining which electrode is glowing they can reveal whether a given voltage source is AC or DC, and if DC, the polarity of the points being tested.

Voltage regulation

The breakdown characteristic of glow-discharge lamps allows them to be used as voltage regulators or overvoltage protection devices. [11] Starting around the 1930s, General Electric (GE), Signalite, and other firms made voltage regulator tubes. A voltage regulator tube was used in the Mark 6 exploder.

Switching element/oscillator

Like other gas discharge lamps, [12] the neon bulb has negative resistance; its voltage falls with increasing current after the bulb reaches its breakdown voltage. [13] [14] [15] Therefore, the bulb has hysteresis; its turn-off (extinction) voltage is lower than its turn-on (breakdown) voltage. [16] This allows it to be used as an active switching element. Neon bulbs were used to make relaxation oscillator circuits, using this mechanism, sometimes referred to as the Pearson–Anson effect [14] [16] [17] for low frequency applications such as flashing warning lights, stroboscopes [18] tone generators in electronic organs, [14] and as time bases and deflection oscillators in early cathode ray oscilloscopes. [19] Neon bulbs can also be bistable, and were even used to build digital logic circuits such as logic gates, flip-flop, binary memories, and digital counters. [20] [21] [22] These applications were sufficiently common that manufacturers made neon bulbs specifically for this use, sometimes called "circuit-component" lamps. At least some of these lamps have a glow concentrated into a small spot on the cathode, which made them unsuited to use as indicators. A variant of the NE-2 type lamp for circuit applications, the NE-77, have three wire electrodes in the bulb (in a plane) instead of the usual two, the third for use as a control electrode.

Detector

Neon lamps have been historically used as microwave and millimeter-wave detectors ("plasma diodes" or glow discharge detectors (GDDs)) up to about 100 GHz or so and in such service were said to exhibit comparable sensitivity (of the order of a few 10s to perhaps 100 microvolts) to the familiar 1N23-type catwhisker-contacted silicon diodes[ citation needed ] once ubiquitous in microwave equipment. More recently it has been found that these lamps work well as detectors even at sub-millimeter ("terahertz") frequencies and they have been successfully used as pixels in several experimental imaging arrays at these wavelengths.

In these applications the lamps are operated either in "starvation" mode (to reduce lamp-current noise) or in normal glow discharge mode; some literature references their use as detectors of radiation up into the optical regime when operated in abnormal glow mode. Coupling of microwaves into the plasma may be in free space, in waveguide, by means of a parabolic concentrator (e.g., Winston cone), or via capacitive means via a loop or dipole antenna mounted directly to the lamp.

Although most of these applications use ordinary off-the-shelf dual-electrode lamps, in one case it was found that special three (or more) electrode lamps, with the extra electrode acting as the coupling antenna, provided even better results (lower noise and higher sensitivity). This discovery received a US patent. [23]

Alphanumerical display

The digits of a Nixie tube. Nixie2.gif
The digits of a Nixie tube.

Neon lamps with several shaped electrodes were used as alphanumerical displays known as Nixie tubes. These have since been replaced by other display devices such as light emitting diodes, vacuum fluorescent displays, and liquid crystal displays.

Since at least the 1940s, argon, neon, and phosphored glow thyratron latching indicators (which would light up upon an impulse on their starter electrode and extinguish only after their anode voltage was cut) were available for example as self-displaying shift registers in large-format, crawling-text dot-matrix displays, [24] or, combined in a 4×4, four-color phosphored-thyratron matrix, as a stackable 625-color RGBA pixel for large video graphics arrays. [25] Multiple-cathode and/or anode glow thyratrons called Dekatrons could count forwards and backwards while their count state was visible as a glow on one of the numbered cathodes. [26] These were used as self-displaying divide-by-n counter/timer/prescalers in counting instruments, or as adder/subtracters in calculators.

Avalanche in a two-dimensional lattice of neon lamps, each one independently supplied and coupled capacitively to its neighbours. For voltages close to the ignition threshold, critical avalanching reminiscent of neural discharged can be generated. Avalanche in an array of neon lamps.gif
Avalanche in a two-dimensional lattice of neon lamps, each one independently supplied and coupled capacitively to its neighbours. For voltages close to the ignition threshold, critical avalanching reminiscent of neural discharged can be generated.

Non-linear circuit element in models of neural-like activity

Neon lamps possess very rich dynamical properties [28] , in particular, because, as the applied voltage changes, the transition between the "on" and "off" phases is at the same time significantly hysteretic and stochastic. Owing to these properties, they have been used as the sole non-linear element in electronic models, or analogues, of neural dynamics, initially by Balthasar van der Pol. In 2016, an elementary network consisting of a two-dimensional lattice of neon lamps, each one biased to a common DC voltage and capacitively-coupled to its neighbors, was investigated. Varying the applied voltage, it was possible to elicit the emergence of ordered, high-rate and disordered, low-rate phases, with a first-order transition between them and critical avalanching, bearing a very close similarity to neural observations of criticality and thus illustrating the generative potential of this simple device, often nowadays relegated to the role of line voltage indicator. [27]

Other

In 1930s radio sets, neon lamps were used as tuning indicators, called "tuneons" and would give a brighter glow as the station was tuned in correctly. [29] [30]

Because of their comparatively short response time, in the early development of television neon lamps were used as the light source in many mechanical-scan TV displays.

Novelty glow lamps with shaped electrodes (such as flowers and leaves), often coated with phosphors, have been made for artistic purposes. In some of these, the glow that surrounds an electrode is part of the design.

Color

Unlit and lit neon lamps (NE-2 type) and their light spectrum. Glimmlampe spektrum.jpg
Unlit and lit neon lamps (NE-2 type) and their light spectrum.

Neon indicator lamps are normally orange, and are frequently used with a colored filter over them to improve contrast and change their color to red or a redder orange, or less often green.[ citation needed ]

Phosphor-colored neon lamps NE2COLORED.JPG
Phosphor-colored neon lamps

They can also be filled with argon, krypton, or xenon rather than neon, or mixed with it. While the electrical operating characteristics remain similar, these lamps light with a bluish glow (including some ultraviolet) rather than neon's characteristic reddish-orange glow. Ultraviolet radiation then can be used to excite a phosphor coating inside of the bulb and provide a wide range of various colors, including white. [31] A mixture of 95% neon, 2.5% krypton, and 2.5% argon can be used for a green glow, [32] but nevertheless "green neon" lamps are more commonly phosphor-based.

See also

Related Research Articles

Electric light A device that produces light from electricity

An electric light is a device that produces visible light from electric current. It is the most common form of artificial lighting and is essential to modern society, providing interior lighting for buildings and exterior light for evening and nighttime activities. In technical usage, a replaceable component that produces light from electricity is called a lamp. Lamps are commonly called light bulbs; for example, the incandescent light bulb. Lamps usually have a base made of ceramic, metal, glass or plastic, which secures the lamp in the socket of a light fixture. The electrical connection to the socket may be made with a screw-thread base, two metal pins, two metal caps or a bayonet cap.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

In electronics, a vacuum tube, an electron tube, or valve or, colloquially, a tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

Nixie tube gas-filled digital indicator tube

A Nixie tube, or cold cathode display, is an electronic device for displaying numerals or other information using glow discharge.

Fluorescent lamp Light source

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than incandescent lamps. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output.

Cold cathode Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

Neon sign electrified, luminous tube lights

In the signage industry, neon signs are electric signs lighted by long luminous gas-discharge tubes that contain rarefied neon or other gases. They are the most common use for neon lighting, which was first demonstrated in a modern form in December 1910 by Georges Claude at the Paris Motor Show. While they are used worldwide, neon signs were popular in the United States from about 1920–1960. The installations in Times Square, many originally designed by Douglas Leigh, were famed, and there were nearly 2,000 small shops producing neon signs by 1940. In addition to signage, neon lighting is used frequently by artists and architects, and in plasma display panels and televisions. The signage industry has declined in the past several decades, and cities are now concerned with preserving and restoring their antique neon signs.

Thyratron type of gas filled tube

A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, producing a phenomenon known as Townsend discharge. Gases used include mercury vapor, xenon, neon, and hydrogen. Unlike a vacuum tube (valve), a thyratron cannot be used to amplify signals linearly.

Gas-filled tube arrangement of electrodes in a gas within an insulating, temperature-resistant envelope

A gas-filled tube, also known as a discharge tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

Glow discharge plasma formed by the passage of electric current through a gas

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

Plasma globe

A plasma globe or plasma lamp is a clear glass container filled with a mixture of various noble gases with a high-voltage electrode in the center of the container.

Geissler tube gas-discharge lamp

A Geissler tube is an early gas discharge tube used to demonstrate the principles of electrical glow discharge, similar to modern neon lighting. The tube was invented by the German physicist and glassblower Heinrich Geissler in 1857. It consists of a sealed, partially evacuated glass cylinder of various shapes with a metal electrode at each end, containing rarefied gasses such as neon, argon, or air; mercury vapor or other conductive fluids; or ionizable minerals or metals, such as sodium. When a high voltage is applied between the electrodes, an electrical current flows through the tube. The current dissociates electrons from the gas molecules, creating ions, and when the electrons recombine with the ions, the gas emits light by fluorescence. The color of light emitted is characteristic of the material within the tube, and many different colors and lighting effects can be achieved. The first gas-discharge lamps, Geissler tubes were novelty items, made in many artistic shapes and colors to demonstrate the new science of electricity. In the early 20th century, the technology was commercialized and evolved into neon lighting.

Mercury-vapor lamp

A mercury-vapor lamp is a gas discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

Metal-halide lamp

A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides. It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide. Once the arc tube reaches its running temperature, the sodium dissociates from the iodine, adding orange and reds to the lamp's spectrum from the sodium D line as the metal ionizes. As a result, metal-halide lamps have high luminous efficacy of around 75–100 lumens per watt, which is about twice that of mercury vapor lights and 3 to 5 times that of incandescent lights and produce an intense white light. Lamp life is 6,000 to 15,000 hours. As one of the most efficient sources of high CRI white light, metal halides as of 2005 were the fastest growing segment of the lighting industry. They are used for wide area overhead lighting of commercial, industrial, and public spaces, such as parking lots, sports arenas, factories, and retail stores, as well as residential security lighting and automotive headlamps.

Electrodeless lamp

The internal electrodeless lamp or induction lamp is a gas discharge lamp in which an electric or magnetic field transfers the power required to generate light from outside the lamp envelope to the gas inside. This is in contrast to a typical gas discharge lamp that uses internal electrodes connected to the power supply by conductors that pass through the lamp envelope. Eliminating the internal electrodes provides two advantages:

Gas-discharge lamp

Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma. Typically, such lamps use a noble gas or a mixture of these gases. Some include additional substances, like mercury, sodium, and metal halides, which are vaporized during startup to become part of the gas mixture. In operation, some of the electrons are forced to leave the atoms of the gas near the anode by the electric field applied between the two electrodes, leaving these atoms positively ionized. The free electrons thus released flowing onto the anode, while the cations thus formed are accelerated by the electric field and flow towards the cathode. Typically, after traveling a very short distance, the ions collide with neutral gas atoms, which transfer their electrons to the ions. The atoms, having lost an electron during the collisions, ionize and speed toward the cathode while the ions, having gained an electron during the collisions, return to a lower energy state while releasing energy in the form of photons. Light of a characteristic frequency is thus emitted. In this way, electrons are relayed through the gas from the cathode to the anode. The color of the light produced depends on the emission spectra of the atoms making up the gas, as well as the pressure of the gas, current density, and other variables. Gas discharge lamps can produce a wide range of colors. Some lamps produce ultraviolet radiation which is converted to visible light by a fluorescent coating on the inside of the lamp's glass surface. The fluorescent lamp is perhaps the best known gas-discharge lamp.

Electric discharge in gases occurs when electric current flows through a gaseous medium due to ionization of the gas. Depending on several factors, the discharge may radiate visible light. The properties of electric discharges in gases are studied in connection with design of lighting sources and in the design of high voltage electrical equipment.

Aerolux Light Corporation

Aerolux Light Corporation was a manufacturer of artful gas-discharge light bulbs from the 1930s through the 1970s. Aerolux made these bulbs in a factory in New York City. US Patents dating back to the 1930s describe the design and construction of these bulbs. Philip J. Kayatt (1896–1975) was president of the company.

References

  1. Weeks, Mary Elvira (2003). Discovery of the Elements: Third Edition (reprint). Kessinger Publishing. p. 287. ISBN   9780766138728. Archived from the original on 2015-03-22.
  2. US 1125476,Georges Claude,"Systems of Illuminating by Luminescent Tubes",issued 1915-01-19
  3. "Claude Neon Lights Wins Injunction Suit: Also Gets Rights to Recover Profits and Damages Resulting From Patent Infringement". The New York Times. November 28, 1928. Paid access.
  4. USpatent 1316967,Daniel McFarlan Moore,"Gaseous Conduction Lamp",issued 1919-09-23, assigned to General Electric Company
  5. 1 2 "Lamp Inventors 1880-1940: Moore Lamp". The Smithsonian Institution. Archived from the original on 2005-03-04.
  6. 1 2 Dougherty, C. R.; Foulke, T. D.; Harden, J. D.; Hewitt, T. L.; Peters, F. N.; Smith, R. D.; Tuttle, J. W. (1966). General Electric Glow Lamp Manual (2nd ed.). General Electric Company.
  7. 1 2 Miller, William G. (1969). Using and Understanding Miniature Neon Lamps. Indianapolis: Howard W Sams & Co, Inc.
  8. "Other emitted colors such as green, yellow and blue are available through secondary emission by coating the inside surface of the envelope with phosphor." — International Light Technology Archived 2014-06-26 at the Wayback Machine
  9. Thielen, Marcus (2006-02-10). "LED or Neon". Archived from the original on 2008-04-09. Retrieved 2008-12-30.
  10. "Let's Use Neon Bulbs". QST Magazine. July 1953. Archived from the original on October 2, 2017. Retrieved October 2, 2017.
  11. Miller, W.G. (1969) Using and Understanding Miniature Neon Lamps Archived 2017-05-17 at the Wayback Machine , p.25-35
  12. Raju, Gorur Govinda (2006). Gaseous Electronics: Theory and Practice. Taylor and Francis. p. 453. ISBN   978-0849337635. Archived from the original on 2014-07-08.
  13. Daugherty, C. L.; Tuttle, J.W.; et al. (1965). G.E. Glow Lamp Manual, 2nd Ed. Cleveland, Ohio: General Electric. p. 2. Archived from the original on 2018-01-14.
  14. 1 2 3 Bauman, Edward (1966). Applications of Neon Lamps and Discharge Tubes. USA: Carleton Press. p. 18. Archived from the original on 2014-04-16.
  15. Dance, J. B. (1968). Cold Cathode Tubes. London: Iliffe. p. 7. Archived from the original on 2014-07-08.
  16. 1 2 Gottlieb, Irving M. (1997). Practical Oscillator Handbook. Elsevier. pp. 69–70. ISBN   978-0080539386. Archived from the original on 2014-07-08.
  17. GE Glow Lamp Manual 1965 Archived 2018-01-14 at the Wayback Machine , p.14-18
  18. Burton, Walter E. (February 1948). "Magic with neon glow lamps". Popular Science. New York: Popular Science Publishing Co. 152 (2): 194–196. ISSN   0161-7370. Archived from the original on July 4, 2014. Retrieved April 14, 2014.
  19. Wahl, Horst D. (2005). "Tutorial Oscilloscope" (PDF). Phys4822L Advanced Lab-Experiment 11: Studies of electrons with a CRT. Prof. Horst D. Wahl, Physics Dept.,Florida State Univ. Archived (PDF) from the original on September 24, 2015. Retrieved April 14, 2014.External link in |publisher= (help)
  20. GE Glow Lamp Manual 1965 Archived 2018-01-14 at the Wayback Machine , p.35-36, 41-66
  21. Hendrix, C. (September 1956). "A Study of the Neon Bulb as a Nonlinear Circuit Element". IRE Transactions on Component Parts. Inst. of Electrical and Electronic Engineers. 3 (2): 44–54. doi:10.1109/TCP.1956.1135748. ISSN   0096-2422.
  22. Miller, William G. (1969). Using and Understanding Miniature Neon Lamps (PDF). Howard W. Sams. pp. 49–59. ISBN   978-0572006693. Archived (PDF) from the original on 2017-05-17.
  23. Farhat, N; Kopeika, N (19 Oct 1972). "Glow discharge millimeter wave detector and method of biasing same". US patent 3790895 A. Archived from the original on 2018-01-14.
  24. "Philips, 1968: ZC1050 data sheet" (PDF). Archived (PDF) from the original on 12 October 2013. Retrieved 10 May 2013.
  25. "Melz, 1944: ИНДИКАТОР ИТМ2-М data sheet" (PDF). Archived from the original (PDF) on 12 October 2013. Retrieved 9 May 2013.
  26. "ETL: GCA10G/GSA10G data sheet" (PDF). Archived (PDF) from the original on 3 March 2016. Retrieved 10 May 2013.
  27. 1 2 Minati L, de Candia A, Scarpetta S. "Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity"
  28. "Dance JN, Cold Cathode Tubes, Iliffe, London, UK, 1968"
  29. "Tuneon". Radiomuseum. Archived from the original on 16 October 2015. Retrieved 12 October 2015.
  30. TuneOn Archived 2018-01-14 at the Wayback Machine and Tuneon-Button Archived 2018-01-14 at the Wayback Machine data sheets
  31. Yen, William M.; Yamamoto, Hajime (2007). Phosphor handbook. CRC Press. p. 442. ISBN   978-0-8493-3564-8. Archived from the original on 2018-01-14.
  32. Bogard, Scott. "Plasma Globe Colors". Scott Bogard's E-Profile. Archived from the original on 9 May 2016. Retrieved 22 April 2016.

Further reading