This article needs additional citations for verification .(January 2016) |
A plasma ball, plasma globe, or plasma lamp is a clear glass container filled with noble gases, usually a mixture of neon, krypton, and xenon, that has a high-voltage electrode in the center of the container. When voltage is applied, a plasma is formed within the container. Plasma filaments extend from the inner electrode to the outer glass insulator, giving the appearance of multiple constant beams of colored light (see corona discharge and electric glow discharge). Plasma balls were popular as novelty items in the 1980s. [1]
The plasma lamp was invented by Nikola Tesla, during his experimentation with high-frequency currents in an evacuated glass tube for the purpose of studying high voltage phenomena. [2] Tesla called his invention an "inert gas discharge tube". [3] The modern plasma lamp design was developed by James Falk and MIT student Bill Parker. [1] [4]
A crackle tube is a related device filled with phosphor-coated beads.
Although many variations exist, a plasma ball is usually a clear glass sphere filled with a mixture of various gases (most commonly neon, sometimes with other noble gases such as argon, xenon and krypton) at nearly atmospheric pressure.
Plasma balls are driven by high-frequency (approximately 35 kHz ) alternating current at 2–5 kV . [1] The drive circuit is essentially a specialized power inverter, in which current from a lower-voltage DC supply powers a high-frequency electronic oscillator circuit whose output is stepped up by a high-frequency, high-voltage transformer, for example a miniature Tesla coil or a flyback transformer. The radio-frequency energy from the transformer is transmitted into the gas within the ball through an electrode at its center. Additionally, some designs utilize the ball as a resonant cavity, which provides positive feedback to the drive transistor through the transformer. A much smaller hollow glass orb can also serve as an electrode when it is filled with metal wool or a conducting fluid that is in communication with the transformer output. In this case, the radio-frequency energy is admitted into the larger space by capacitive coupling right through the glass. Plasma filaments extend from the inner electrode to the outer glass insulator, giving the appearance of moving tendrils of colored light within the volume of the ball (see corona discharge and electric glow discharge). If a hand is placed close to the ball it produces a faint smell of ozone, as the gas is produced by high voltage interaction with atmospheric oxygen.
Some balls have a control knob that varies the amount of power going to the center electrode. At the very lowest setting that will light or "strike" the ball, a single tendril is made. This single tendril's plasma channel engages enough space to transmit this lowest striking energy to the outside world through the glass of the ball. As the power is increased, this single channel's capacity is overwhelmed and a second channel forms, then a third, and so on. The tendrils each compete for a footprint on the inner orb as well. The energies flowing through these are all of the same polarity, so they repel each other as like charges: a thin dark boundary surrounds each footprint on the inner electrode.
The ball is prepared by pumping out as much air as is practical. The ball is then backfilled with neon to a pressure similar to one atmosphere. If the radio-frequency power is turned on, if the ball is "struck" or "lit", now, the whole ball will glow a diffuse red. If a little argon is added, the filaments will form. If a very small amount of xenon is added, the "flowers" will bloom at the ends of the filaments.[ citation needed ]
The neon available for purchase for a neon-sign shop often comes in glass flasks at the pressure of a partial vacuum. These cannot be used to fill a ball with a useful mixture. Tanks of gas, each with its specific, proper, pressure regulator and fitting, are required: one for each of the gases involved.
Of the other noble gases, radon is radioactive, helium escapes through the glass relatively quickly, and krypton is expensive. Other gases such as mercury vapor can be used. Molecular gases may be dissociated by the plasma.
Placing a finger tip on the glass creates an attractive spot for the energy to flow because the conductive human body (having an internal resistance less than 1000 ohms) [5] is more easily polarized than the dielectric material around the electrode (i.e. the gas within the ball) providing an alternative discharge path having less resistance. Therefore, the capacity of the large conducting body to accept radio frequency energy is greater than that of the surrounding air. The energy available to the filaments of plasma within the ball will preferentially flow toward the better acceptor. This flow also causes a single filament, from the inner ball to the point of contact, to become brighter and thinner. [1] The filament is brighter because there is more current flowing through it and into the human body, which has a capacitance of about 100 pF. [6] The filament is thinner because the magnetic fields around it, augmented by the now-higher current flowing through it, cause a magnetohydrodynamic effect called pinch: the plasma channel's own magnetic fields create a force acting to compress the size of the plasma channel itself.
Much of the movement of the filaments is due to heating of the gas around the filament. When gas along the filament is heated, it becomes more buoyant and rises, carrying the filament with it. If the filament is discharging into a fixed object (like a hand) on the side of the ball, it will begin to deform into a curved path between the central electrode and the object. When the distance between the electrode and the object becomes too great to maintain, the filament will break and a new filament will reform between the electrode and the hand (see also Jacob's Ladder, which exhibits a similar behavior).
An electric current is produced within any conductive object near the orb. The glass acts as a dielectric in a capacitor formed between the ionized gas and the hand.
By adjusting the voltage, frequency, chemical composition and pressure of gas in the globe, many colorful effects can be achieved
In U.S. patent 0,514,170 ("Incandescent Electric Light", 1894 February 6), Nikola Tesla describes a plasma lamp. This patent is for one of the first high-intensity discharge lamps. Tesla used an incandescent-type lamp ball with a single internal conductive element and excited the element with high voltage currents from a Tesla coil, thus creating the brush discharge emanation. He gained patent protection on a particular form of the lamp in which a light-giving small body or button of refractory material is supported by a conductor entering a very highly exhausted ball or receiver. Tesla called this invention the single terminal lamp, or, later, the "Inert Gas Discharge Tube". [3]
The Groundstar style of plasma ball was created by James Falk and marketed to collectors and science museums in the 1970s and 1980s. [1] Jerry Pournelle in 1984 praised Orb Corporation's Omnisphere as "the most fabulous object in the entire world" and "magnificent ... a new kind of art object", stating "you can't buy mine for any price". [7]
The technology needed to formulate gas mixtures used in today's plasma spheres was not available to Tesla.[ citation needed ] Modern lamps typically use combinations of xenon, krypton and neon, although other gases can be used. [1] [3] These gas mixtures, along with different glass shapes and integrated-circuit-driven electronics, create the vivid colors, range of motions, and complex patterns seen in today's plasma spheres.
Plasma balls are mainly used as curiosities or toys for their unique lighting effects and the "tricks" that can be performed on them by users moving their hands around them. They might also form part of a school's laboratory equipment for demonstration purposes. They are not usually employed for general lighting. However, in recent years, some novelty stores have begun selling miniature plasma ball nightlights that can be mounted on a standard light socket. [8] [9]
Plasma balls can be used for experimenting with high voltages. If a conductive plate or wire coil is placed on the ball, capacitive coupling can transfer enough voltage to the plate or coil to produce a small arc or energize a high voltage load. This is possible because the plasma inside the ball and the conductor outside it act as plates of a capacitor, with the glass in between as a dielectric. A step-down transformer connected between the plate and the ball's electrode can produce lower-voltage, higher-current radio frequency output. Careful earth grounding is essential to prevent injury or damage to equipment.
Bringing conductive materials or electronic devices close to a plasma ball may cause the glass to become hot. The high voltage radio frequency energy coupled to them from within the ball may cause a mild electric shock to the person touching, even through a protective glass casing. The radio frequency field produced by plasma balls can interfere with the operation of touchpads used on laptop computers, digital audio players, cell phones, and other similar devices. [1] Some types of plasma ball can radiate sufficient radio frequency interference (RFI) to interfere with cordless telephones and Wi-Fi devices several feet or some meters away.
If an electrical conductor touches the outside of the ball, capacitive coupling can induce enough potential on it to produce a small arc. This is possible because the ball's glass acts as a capacitor dielectric: the inside of the lamp acts as one plate, and the conductive object on the outside acts as the opposite capacitor plate. [3] This is a dangerous action that can damage the ball or other electronic devices, and presents a fire ignition hazard. [1]
Perceptible amounts of ozone can be formed on the surface of a plasma ball. Many people can detect ozone at concentrations of 0.01–0.1 ppm , which is right below the lowest concentration at which ozone is considered harmful to health. Exposure of 0.1 to 1 ppm produces headaches, burning eyes, and irritation to the respiratory passages.
In July 2022, a spark from a plasma globe at the Questacon museum in Australia ignited the alcohol-based hand sanitiser that had been applied to a child's hands leaving them with serious burns. [10]
A Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high-frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits.
A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp, but is less efficient than most LED lamps. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficiency of an incandescent bulb may only be 16 lumens per watt.
A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light, and heat.
A neon lamp is a miniature gas-discharge lamp. The lamp typically consists of a small glass capsule that contains a mixture of neon and other gases at a low pressure and two electrodes. When sufficient voltage is applied and sufficient current is supplied between the electrodes, the lamp produces an orange glow discharge. The glowing portion in the lamp is a thin region near the cathode; the larger and much longer neon signs are also glow discharges, but they use the positive column which is not present in the ordinary neon lamp. Neon glow lamps were widely used as indicator lamps in the displays of electronic instruments and appliances. They are still sometimes used for their electrical simplicity in high-voltage circuits.
In the signage industry, neon signs are electric signs lighted by long luminous gas-discharge tubes that contain rarefied neon or other gases. They are the most common use for neon lighting, which was first demonstrated in a modern form in December 1910 by Georges Claude at the Paris Motor Show. While they are used worldwide, neon signs were popular in the United States from about the 1920s to 1950s. The installations in Times Square, many originally designed by Douglas Leigh, were famed, and there were nearly 2,000 small shops producing neon signs by 1940. In addition to signage, neon lighting is used frequently by artists and architects, and in plasma display panels and televisions. The signage industry has declined in the past several decades, and cities are now concerned with preserving and restoring their antique neon signs.
A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp (Chemiluminescence). Corona discharges can also happen in weather, such as thunderstorms, where objects like ship masts or airplane wings have a charge significantly different from the air around them.
A flashtube (flashlamp) produces an electrostatic discharge with an extremely intense, incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with a gas that, when triggered, ionizes and conducts a high-voltage pulse to make light. Flashtubes are used most in photography; they also are used in science, medicine, industry, and entertainment.
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.
In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material, subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient voltage, electrical breakdown can occur within solids, liquids, or gases. However, the specific breakdown mechanisms are different for each kind of dielectric medium.
A Geissler tube is a precursor to modern gas discharge tubes, demonstrating the principles of electrical glow discharge, akin to contemporary neon lights, and central to the discovery of the electron. This device was developed in 1857 by Heinrich Geissler, a German physicist and glassblower. A Geissler tube is composed of a sealed glass cylinder of various shapes, which is partially evacuated and equipped with a metal electrode at each end. It contains rarefied gases—such as neon or argon, air, mercury vapor, or other conductive substances, and sometimes ionizable minerals or metals like sodium. When a high voltage is applied between the electrodes, there is an electric current through the tube, causing gas molecules to ionize by shedding electrons. The free electrons reunite with the ions and the resulting energic atoms emit light via fluorescence, with the emitted color characteristic of the contained material.
An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".
The induction lamp, electrodeless lamp, or electrodeless induction lamp is a gas-discharge lamp in which an electric or magnetic field transfers the power required to generate light from outside the lamp envelope to the gas inside. This is in contrast to a typical gas discharge lamp that uses internal electrodes connected to the power supply by conductors that pass through the lamp envelope. Eliminating the internal electrodes provides two advantages:
Hydrargyrum medium-arc iodide (HMI) is the trademark name of Osram's brand of metal-halide gas discharge medium arc-length lamp, made specifically for film and entertainment applications. Hydrargyrum comes from the Greek name for the element mercury.
Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma.
Laser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When for a period of time the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.
Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Chemical reactions are involved in the process, which occur after creation of a plasma of the reacting gases. The plasma is generally created by radio frequency (RF) alternating current (AC) frequency or direct current (DC) discharge between two electrodes, the space between which is filled with the reacting gases.
Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial discharge, it was first reported by Ernst Werner von Siemens in 1857.
A crackle tube is a type of plasma lamp that is used most commonly in museums, night clubs, movie sets, and other applications where its appearance may be appealing for entertainment. Such a device consists of a double walled glass tube with a hollow center. The cavity between the inner and outer glass tubes is filled with thousands of small phosphor coated glass beads. A 5–14 kV transformer produces a low power gas discharge in the bead filled cavity, producing filaments of light that simulate lightning. Crackle tubes get their name not because of the sound they produce but rather because of the appearance of their internal behavior. The "lightning" is forced around and in between the phosphor-coated glass beads, due to the beads' dielectric nature. In so doing, the phosphor is excited by the electrical energy and fluoresces producing visible light. Like plasma globes, crackle tubes respond to touch; the filaments appear to be "attracted" toward the point of contact and usually become more luminous (brighter) as the electricity is grounded. The tubes are also filled with a noble gas like neon, argon, or xenon which acts as the electron transfer medium of the cavity. The gas is typically below atmospheric pressure.
Piezoelectric direct discharge (PDD) plasma is a type of cold non-equilibrium plasma, generated by a direct gas discharge of a high voltage piezoelectric transformer. It can be ignited in air or other gases in a wide range of pressures, including atmospheric. Due to the compactness and the efficiency of the piezoelectric transformer, this method of plasma generation is particularly compact, efficient and cheap. It enables a wide spectrum of industrial, medical and consumer applications.