Photoluminescence

Last updated
Fluorescent solutions under UV light. Absorbed photons are rapidly re-emitted under longer electromagnetic wavelengths. Fluorescence rainbow.JPG
Fluorescent solutions under UV light. Absorbed photons are rapidly re-emitted under longer electromagnetic wavelengths.

Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). [1] It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photons that excite electrons to a higher energy level in an atom), hence the prefix photo-. [2] Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors [3] up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

Contents

Observation of photoluminescence at a certain energy can be viewed as an indication that an electron populated an excited state associated with this transition energy.

While this is generally true in atoms and similar systems, correlations and other more complex phenomena also act as sources for photoluminescence in many-body systems such as semiconductors. A theoretical approach to handle this is given by the semiconductor luminescence equations.

Forms

Schematic for the excitation-relaxation processes of photoluminescence Photoluminescence animation.gif
Schematic for the excitation-relaxation processes of photoluminescence

Photoluminescence processes can be classified by various parameters such as the energy of the exciting photon with respect to the emission. Resonant excitation describes a situation in which photons of a particular wavelength are absorbed and equivalent photons are very rapidly re-emitted. This is often referred to as resonance fluorescence. For materials in solution or in the gas phase, this process involves electrons but no significant internal energy transitions involving molecular features of the chemical substance between absorption and emission. In crystalline inorganic semiconductors where an electronic band structure is formed, secondary emission can be more complicated as events may contain both coherent contributions such as resonant Rayleigh scattering where a fixed phase relation with the driving light field is maintained (i.e. energetically elastic processes where no losses are involved), and incoherent contributions (or inelastic modes where some energy channels into an auxiliary loss mode), [4]

The latter originate, e.g., from the radiative recombination of excitons, Coulomb-bound electron-hole pair states in solids. Resonance fluorescence may also show significant quantum optical correlations. [4] [5] [6]

More processes may occur when a substance undergoes internal energy transitions before re-emitting the energy from the absorption event. Electrons change energy states by either resonantly gaining energy from absorption of a photon or losing energy by emitting photons. In chemistry-related disciplines, one often distinguishes between fluorescence and phosphorescence. The former is typically a fast process, yet some amount of the original energy is dissipated so that re-emitted light photons will have lower energy than did the absorbed excitation photons. The re-emitted photon in this case is said to be red shifted, referring to the reduced energy it carries following this loss (as the Jablonski diagram shows). For phosphorescence, electrons which absorbed photons, undergo intersystem crossing where they enter into a state with altered spin multiplicity (see term symbol), usually a triplet state. Once the excited electron is transferred into this triplet state, electron transition (relaxation) back to the lower singlet state energies is quantum mechanically forbidden, meaning that it happens much more slowly than other transitions. The result is a slow process of radiative transition back to the singlet state, sometimes lasting minutes or hours. This is the basis for "glow in the dark" substances.

Photoluminescence is an important technique for measuring the purity and crystalline quality of semiconductors such as GaN and InP and for quantification of the amount of disorder present in a system. [7]

Time-resolved photoluminescence (TRPL) is a method where the sample is excited with a light pulse and then the decay in photoluminescence with respect to time is measured. This technique is useful for measuring the minority carrier lifetime of III-V semiconductors like gallium arsenide (GaAs).

Photoluminescence properties of direct-gap semiconductors

In a typical PL experiment, a semiconductor is excited with a light-source that provides photons with an energy larger than the bandgap energy. The incoming light excites a polarization that can be described with the semiconductor Bloch equations. [8] [9] Once the photons are absorbed, electrons and holes are formed with finite momenta in the conduction and valence bands, respectively. The excitations then undergo energy and momentum relaxation towards the band-gap minimum. Typical mechanisms are Coulomb scattering and the interaction with phonons. Finally, the electrons recombine with holes under emission of photons.

Ideal, defect-free semiconductors are many-body systems where the interactions of charge-carriers and lattice vibrations have to be considered in addition to the light-matter coupling. In general, the PL properties are also extremely sensitive to internal electric fields and to the dielectric environment (such as in photonic crystals) which impose further degrees of complexity. A precise microscopic description is provided by the semiconductor luminescence equations. [8]

Ideal quantum-well structures

An ideal, defect-free semiconductor quantum well structure is a useful model system to illustrate the fundamental processes in typical PL experiments. The discussion is based on results published in Klingshirn (2012) [10] and Balkan (1998). [11]

The fictive model structure for this discussion has two confined quantized electronic and two hole subbands, e1, e2 and h1, h2, respectively. The linear absorption spectrum of such a structure shows the exciton resonances of the first (e1h1) and the second quantum well subbands (e2, h2), as well as the absorption from the corresponding continuum states and from the barrier.

Photoexcitation

In general, three different excitation conditions are distinguished: resonant, quasi-resonant, and non-resonant. For the resonant excitation, the central energy of the laser corresponds to the lowest exciton resonance of the quantum well. No, or only a negligible amount of the excess, energy is injected to the carrier system. For these conditions, coherent processes contribute significantly to the spontaneous emission. [4] [12] The decay of polarization creates excitons directly. The detection of PL is challenging for resonant excitation as it is difficult to discriminate contributions from the excitation, i.e., stray-light and diffuse scattering from surface roughness. Thus, speckle and resonant Rayleigh-scattering are always superimposed to the incoherent emission.

In case of the non-resonant excitation, the structure is excited with some excess energy. This is the typical situation used in most PL experiments as the excitation energy can be discriminated using a spectrometer or an optical filter. One has to distinguish between quasi-resonant excitation and barrier excitation.

For quasi-resonant conditions, the energy of the excitation is tuned above the ground state but still below the barrier absorption edge, for example, into the continuum of the first subband. The polarization decay for these conditions is much faster than for resonant excitation and coherent contributions to the quantum well emission are negligible. The initial temperature of the carrier system is significantly higher than the lattice temperature due to the surplus energy of the injected carriers. Finally, only the electron-hole plasma is initially created. It is then followed by the formation of excitons. [13] [14]

In case of barrier excitation, the initial carrier distribution in the quantum well strongly depends on the carrier scattering between barrier and the well.

Relaxation

Initially, the laser light induces coherent polarization in the sample, i.e., the transitions between electron and hole states oscillate with the laser frequency and a fixed phase. The polarization dephases typically on a sub-100 fs time-scale in case of nonresonant excitation due to ultra-fast Coulomb- and phonon-scattering. [15]

The dephasing of the polarization leads to creation of populations of electrons and holes in the conduction and the valence bands, respectively. The lifetime of the carrier populations is rather long, limited by radiative and non-radiative recombination such as Auger recombination. During this lifetime a fraction of electrons and holes may form excitons, this topic is still controversially discussed in the literature. The formation rate depends on the experimental conditions such as lattice temperature, excitation density, as well as on the general material parameters, e.g., the strength of the Coulomb-interaction or the exciton binding energy.

The characteristic time-scales are in the range of hundreds of picoseconds in GaAs; [13] they appear to be much shorter in wide-gap semiconductors. [16]

Directly after the excitation with short (femtosecond) pulses and the quasi-instantaneous decay of the polarization, the carrier distribution is mainly determined by the spectral width of the excitation, e.g., a laser pulse. The distribution is thus highly non-thermal and resembles a Gaussian distribution, centered at a finite momentum. In the first hundreds of femtoseconds, the carriers are scattered by phonons, or at elevated carrier densities via Coulomb-interaction. The carrier system successively relaxes to the Fermi–Dirac distribution typically within the first picosecond. Finally, the carrier system cools down under the emission of phonons. This can take up to several nanoseconds, depending on the material system, the lattice temperature, and the excitation conditions such as the surplus energy.

Initially, the carrier temperature decreases fast via emission of optical phonons. This is quite efficient due to the comparatively large energy associated with optical phonons, (36meV or 420K in GaAs) and their rather flat dispersion, allowing for a wide range of scattering processes under conservation of energy and momentum. Once the carrier temperature decreases below the value corresponding to the optical phonon energy, acoustic phonons dominate the relaxation. Here, cooling is less efficient due their dispersion and small energies and the temperature decreases much slower beyond the first tens of picoseconds. [17] [18] At elevated excitation densities, the carrier cooling is further inhibited by the so-called hot-phonon effect. [19] The relaxation of a large number of hot carriers leads to a high generation rate of optical phonons which exceeds the decay rate into acoustic phonons. This creates a non-equilibrium "over-population" of optical phonons and thus causes their increased reabsorption by the charge-carriers significantly suppressing any cooling. Thus, a system cools slower, the higher the carrier density is.

Radiative recombination

The emission directly after the excitation is spectrally very broad, yet still centered in the vicinity of the strongest exciton resonance. As the carrier distribution relaxes and cools, the width of the PL peak decreases and the emission energy shifts to match the ground state of the exciton (such as an electron) for ideal samples without disorder. The PL spectrum approaches its quasi-steady-state shape defined by the distribution of electrons and holes. Increasing the excitation density will change the emission spectra. They are dominated by the excitonic ground state for low densities. Additional peaks from higher subband transitions appear as the carrier density or lattice temperature are increased as these states get more and more populated. Also, the width of the main PL peak increases significantly with rising excitation due to excitation-induced dephasing [20] and the emission peak experiences a small shift in energy due to the Coulomb-renormalization and phase-filling. [9]

In general, both exciton populations and plasma, uncorrelated electrons and holes, can act as sources for photoluminescence as described in the semiconductor-luminescence equations. Both yield very similar spectral features which are difficult to distinguish; their emission dynamics, however, vary significantly. The decay of excitons yields a single-exponential decay function since the probability of their radiative recombination does not depend on the carrier density. The probability of spontaneous emission for uncorrelated electrons and holes, is approximately proportional to the product of electron and hole populations eventually leading to a non-single-exponential decay described by a hyperbolic function.

Effects of disorder

Real material systems always incorporate disorder. Examples are structural defects [21] in the lattice or disorder due to variations of the chemical composition. Their treatment is extremely challenging for microscopic theories due to the lack of detailed knowledge about perturbations of the ideal structure. Thus, the influence of the extrinsic effects on the PL is usually addressed phenomenologically. [22] In experiments, disorder can lead to localization of carriers and hence drastically increase the photoluminescence life times as localized carriers cannot as easily find nonradiative recombination centers as can free ones.

Researchers from the King Abdullah University of Science and Technology (KAUST) have studied the photoinduced entropy (i.e. thermodynamic disorder) of InGaN/GaN p-i-n double-heterostructure and AlGaN nanowires using temperature-dependent photoluminescence. [7] [23] They defined the photoinduced entropy as a thermodynamic quantity that represents the unavailability of a system's energy for conversion into useful work due to carrier recombination and photon emission. They have also related the change in entropy generation to the change in photocarrier dynamics in the nanowire active regions using results from time-resolved photoluminescence study. They hypothesized that the amount of generated disorder in the InGaN layers eventually increases as the temperature approaches room temperature because of the thermal activation of surface states, while an insignificant increase was observed in AlGaN nanowires, indicating lower degrees of disorder-induced uncertainty in the wider bandgap semiconductor. To study the photoinduced entropy, the scientists have developed a mathematical model that considers the net energy exchange resulting from photoexcitation and photoluminescence.

Photoluminescent materials for temperature detection

In phosphor thermometry, the temperature dependence of the photoluminescence process is exploited to measure temperature.

Experimental methods

Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. The technique itself is fast, contactless, and nondestructive. Therefore, it can be used to study the optoelectronic properties of materials of various sizes (from microns to centimeters) during the fabrication process without complex sample preparation. [24] For example, photoluminescence measurements of solar cell absorbers can predict the maximum voltage the material could produce. [25] In chemistry, the method is more often referred to as fluorescence spectroscopy, but the instrumentation is the same. The relaxation processes can be studied using time-resolved fluorescence spectroscopy to find the decay lifetime of the photoluminescence. These techniques can be combined with microscopy, to map the intensity (confocal microscopy) or the lifetime (fluorescence-lifetime imaging microscopy) of the photoluminescence across a sample (e.g. a semiconducting wafer, or a biological sample that has been marked with fluorescent molecules). Modulated photoluminescence is a specific method for measuring the complex frequency response of the photoluminescence signal to a sinusoidal excitation, allowing for the direct extraction of minority carrier lifetime without the need for intensity calibrations. It has been used to study the influence of interface defects on the recombination of excess carriers in crystalline silicon wafers with different passivation schemes. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Exciton</span> Quasiparticle which is a bound state of an electron and an electron hole

An electron and an electron hole that are attracted to each other by the Coulomb force can form a bound state called an exciton. It is an electrically neutral quasiparticle that exists mainly in condensed matter, including insulators, semiconductors, some metals, but also in certain atoms, molecules and liquids. The exciton is regarded as an elementary excitation that can transport energy without transporting net electric charge.

<span class="mw-page-title-main">Cathodoluminescence</span> Photon emission under the impact of an electron beam

Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a television that uses a cathode ray tube. Cathodoluminescence is the inverse of the photoelectric effect, in which electron emission is induced by irradiation with photons.

<span class="mw-page-title-main">Band gap</span> Energy range in a solid where no electron states exist

In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the valence band to the conduction band, then current can flow. Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances having large band gaps are generally insulators, those with small band gaps are semiconductor, and conductors either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.

<span class="mw-page-title-main">Scintillator</span> Material which glows when excited by ionizing radiation

A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.

<span class="mw-page-title-main">Quantum dot</span> Zero-dimensional, nano-scale semiconductor particles with novel optical and electronic properties

Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conductance band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the conductance band and the valence band, or the transition between discrete energy states when the band structure is no longer well-defined in QDs.

In solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.

<span class="mw-page-title-main">Sound amplification by stimulated emission of radiation</span>

Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.

<span class="mw-page-title-main">Multiple exciton generation</span> A concept in quantum electronics

In solar cell research, carrier multiplication is the phenomenon wherein the absorption of a single photon leads to the excitation of multiple electrons from the valence band to conduction band. In the theory of a conventional solar cell, each photon is only able to excite one electron across the band gap of the semiconductor, and any excess energy in that photon is dissipated as heat. In a material with carrier multiplication, high-energy photons excite on average more than one electron across the band gap, and so in principle the solar cell can produce more useful work.

<span class="mw-page-title-main">Optical properties of carbon nanotubes</span> Optical properties of the material

The optical properties of carbon nanotubes are highly relevant for materials science. The way those materials interact with electromagnetic radiation is unique in many respects, as evidenced by their peculiar absorption, photoluminescence (fluorescence), and Raman spectra.

Photoluminescence excitation is a specific type of photoluminescence and concerns the interaction between electromagnetic radiation and matter. It is used in spectroscopic measurements where the frequency of the excitation light is varied, and the luminescence is monitored at the typical emission frequency of the material being studied. Peaks in the PLE spectra often represent absorption lines of the material. PLE spectroscopy is a useful method to investigate the electronic level structure of materials with low absorption due to the superior signal-to-noise ratio of the method compared to absorption measurements.

A trion is a bound state of three charged particles. A negatively charged trion in crystals consists of two electrons and one hole, while a positively charged trion consists of two holes and one electron. The binding energy of a trion is largely determined by the exchange interaction between the two electrons (holes). The ground state of a negatively charged trion is a singlet. The triplet state is unbound in the absence of an additional potential or sufficiently strong magnetic field.

Blinking colloidal nanocrystals is a phenomenon observed during studies of single colloidal nanocrystals that show that they randomly turn their photoluminescence on and off even under continuous light illumination. This has also been described as luminescence intermittency. Similar behavior has been observed in crystals made of other materials. For example, porous silicon also exhibits this affect.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

The Elliott formula describes analytically, or with few adjustable parameters such as the dephasing constant, the light absorption or emission spectra of solids. It was originally derived by Roger James Elliott to describe linear absorption based on properties of a single electron–hole pair. The analysis can be extended to a many-body investigation with full predictive powers when all parameters are computed microscopically using, e.g., the semiconductor Bloch equations or the semiconductor luminescence equations.

The interaction of matter with light, i.e., electromagnetic fields, is able to generate a coherent superposition of excited quantum states in the material. Coherent denotes the fact that the material excitations have a well defined phase relation which originates from the phase of the incident electromagnetic wave. Macroscopically, the superposition state of the material results in an optical polarization, i.e., a rapidly oscillating dipole density. The optical polarization is a genuine non-equilibrium quantity that decays to zero when the excited system relaxes to its equilibrium state after the electromagnetic pulse is switched off. Due to this decay which is called dephasing, coherent effects are observable only for a certain temporal duration after pulsed photoexcitation. Various materials such as atoms, molecules, metals, insulators, semiconductors are studied using coherent optical spectroscopy and such experiments and their theoretical analysis has revealed a wealth of insights on the involved matter states and their dynamical evolution.

Stephan W. Koch was a German theoretical physicist. He was a professor at the University of Marburg and works on condensed-matter theory, many-body effects, and laser theory. He is best known for his seminal contributions to the optical and electronic properties of semiconductors, semiconductor quantum optics, and semiconductor laser designs. Major portion of his research work has focused on the quantum physics and application potential of semiconductor nanostructures. Besides gaining fundamental insights to the many-body quantum theory, his work has provided new possibilities to develop, e.g., laser technology, based on accurate computer simulations. His objective has been to self-consistently include all relevant many-body effects in order to eliminate phenomenological approximations that compromise predictability of effects and quantum-device designs.

Quantum-optical spectroscopy is a quantum-optical generalization of laser spectroscopy where matter is excited and probed with a sequence of laser pulses.

Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz. In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz spectroscopy provides a particularly powerful method in resolving and controlling individual transitions between different many-body states. By doing this, one gains new insights about many-body quantum kinetics and how that can be utilized in developing new technologies that are optimized up to the elementary quantum level.

Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.

A quantum dot single-photon source is based on a single quantum dot placed in an optical cavity. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an exciton in the quantum dot. The decay of a single exciton due to spontaneous emission leads to the emission of a single photon. Due to interactions between excitons, the emission when the quantum dot contains a single exciton is energetically distinct from that when the quantum dot contains more than one exciton. Therefore, a single exciton can be deterministically created by a laser pulse and the quantum dot becomes a nonclassical light source that emits photons one by one and thus shows photon antibunching. The emission of single photons can be proven by measuring the second order intensity correlation function. The spontaneous emission rate of the emitted photons can be enhanced by integrating the quantum dot in an optical cavity. Additionally, the cavity leads to emission in a well-defined optical mode increasing the efficiency of the photon source.

References

  1. Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; Macdonald, Daniel; Nguyen, Hieu T. (24 November 2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID   33155803. S2CID   226269683.
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "photochemistry".
  3. Hayes, G.R.; Deveaud, B. (2002). "Is Luminescence from Quantum Wells Due to Excitons?". Physica Status Solidi A190 (3): 637–640. doi:10.1002/1521-396X(200204)190:3<637::AID-PSSA637>3.0.CO;2-7
  4. 1 2 3 Kira, M.; Jahnke, F.; Koch, S. W. (1999). "Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells". Physical Review Letters82 (17): 3544–3547. doi:10.1103/PhysRevLett.82.3544
  5. Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence". Physical Review Letters39 (11): 691–695. doi:10.1103/PhysRevLett.39.691
  6. Carmichael, H. J.; Walls, D. F. (1976). "Proposal for the measurement of the resonant Stark effect by photon correlation techniques". Journal of Physics B: Atomic and Molecular Physics9 (4): L43. doi:10.1088/0022-3700/9/4/001
  7. 1 2 Alfaraj, N.; Mitra, S.; Wu, F.; Ajia, A. A.; Janjua, B.; Prabaswara, A.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires". Applied Physics Letters110 (16): 161110.
  8. 1 2 Kira, M.; Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press. ISBN   978-0521875097.
  9. 1 2 Haug, H.; Koch, S. W. (2009). Quantum Theory of the Optical and Electronic Properties of Semiconductors (5th ed.). World Scientific. p. 216. ISBN   9812838848.
  10. Klingshirn, Claus F. (2012). Semiconductor Optics. Springer. ISBN   978-3-642-28361-1 OCLC   905285603.
  11. Balkan, Naci (1998). Hot Electrons in Semiconductors: Physics and Devices. Oxford University Press. ISBN   0198500580.
  12. Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W. (1999). "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures". Progress in Quantum Electronics23 (6): 189–279. doi:10.1016/S0079-6727(99)00008-7.
  13. 1 2 Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. (2003). "Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". Nature423 (6941): 734–738. doi:10.1038/nature01676.
  14. Chatterjee, S.; Ell, C.; Mosor, S.; Khitrova, G.; Gibbs, H.; Hoyer, W.; Kira, M.; Koch, S. W.; Prineas, J.; Stolz, H. (2004). "Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons". Physical Review Letters92 (6). doi:10.1103/PhysRevLett.92.067402.
  15. Arlt, S.; Siegner, U.; Kunde, J.; Morier-Genoud, F.; Keller, U. (1999). "Ultrafast dephasing of continuum transitions in bulk semiconductors". Physical Review B59 (23): 14860–14863. doi:10.1103/PhysRevB.59.14860.
  16. Umlauff, M.; Hoffmann, J.; Kalt, H.; Langbein, W.; Hvam, J.; Scholl, M.; Söllner, J.; Heuken, M.; Jobst, B.; Hommel, D. (1998). "Direct observation of free-exciton thermalization in quantum-well structures". Physical Review B57 (3): 1390–1393. doi:10.1103/PhysRevB.57.1390.
  17. Kash, Kathleen; Shah, Jagdeep (1984). "Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies". Applied Physics Letters45 (4): 401. doi:10.1063/1.95235.
  18. Polland, H.; Rühle, W.; Kuhl, J.; Ploog, K.; Fujiwara, K.; Nakayama, T. (1987). "Nonequilibrium cooling of thermalized electrons and holes in GaAs/Al_{x}Ga_{1-x}As quantum wells". Physical Review B35 (15): 8273–8276. doi:10.1103/PhysRevB.35.8273.
  19. Shah, Jagdeep; Leite, R.C.C.; Scott, J.F. (1970). "Photoexcited hot LO phonons in GaAs". Solid State Communications8 (14): 1089–1093. doi:10.1016/0038-1098(70)90002-5.
  20. Wang, Hailin; Ferrio, Kyle; Steel, Duncan; Hu, Y.; Binder, R.; Koch, S. W. (1993). "Transient nonlinear optical response from excitation induced dephasing in GaAs". Physical Review Letters71 (8): 1261–1264. doi:10.1103/PhysRevLett.71.1261.
  21. Lähnemann, J.; Jahn, U.; Brandt, O.; Flissikowski, T.; Dogan, P.; Grahn, H.T. (2014). "Luminescence associated with stacking faults in GaN". J. Phys. D: Appl. Phys. 47 (42): 423001. arXiv: 1405.1261 . Bibcode:2014JPhD...47P3001L. doi:10.1088/0022-3727/47/42/423001. S2CID   118671207.
  22. Baranovskii, S.; Eichmann, R.; Thomas, P. (1998). "Temperature-dependent exciton luminescence in quantum wells by computer simulation". Physical Review B58 (19): 13081–13087. doi:10.1103/PhysRevB.58.13081.
  23. Alfaraj, N.; Mumthaz Muhammed, M.; Li, K.; Janjua, B.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Thermodynamic photoinduced disorder in AlGaN nanowires". AIP Advances7 (12): 125113.
  24. Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; MacDonald, Daniel; Nguyen, Hieu T. (2020). "Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID   33155803. S2CID   226269683.
  25. Sibentritt, Susanne; Weiss, Thomas Paul; Sood, Mohit; Wolter, Max Hilaire; Lomuscio, Alberto; Ramirez, Omar (2021). "How photoluminescence can predict the efficiency of solar cells". Journal of Physics: Materials. 4 (4): 042010. Bibcode:2021JPhM....4d2010S. doi: 10.1088/2515-7639/ac266e . S2CID   239106918.
  26. Brüggemann, R.; Reynolds, S. (2006). "Modulated photoluminescence studies for lifetime determination in amorphous-silicon passivated crystalline-silicon wafers". Physics of Plasmas. 32 (9–20): 1888–1891. Bibcode:2006JNCS..352.1888B. doi:10.1016/j.jnoncrysol.2005.11.092.

Further reading