Term symbol

Last updated

In atomic physics, a term symbol is an abbreviated description of the total spin and orbital angular momentum quantum numbers of the electrons in a multi-electron atom. So while the word symbol suggests otherwise, it represents an actual value of a physical quantity.

Contents

For a given electron configuration of an atom, its state depends also on its total angular momentum, including spin and orbital components, which are specified by the term symbol. The usual atomic term symbols assume LS coupling (also known as Russell–Saunders coupling) in which the all-electron total quantum numbers for orbital (L), spin (S) and total (J) angular momenta are good quantum numbers.

In the terminology of atomic spectroscopy, L and S together specify a term; L, S, and J specify a level; and L, S, J and the magnetic quantum number MJ specify a state. The conventional term symbol has the form 2S+1LJ, where J is written optionally in order to specify a level. L is written using spectroscopic notation: for example, it is written "S", "P", "D", or "F" to represent L = 0, 1, 2, or 3 respectively. For coupling schemes other that LS coupling, such as the jj coupling that applies to some heavy elements, other notations are used to specify the term.

Term symbols apply to both neutral and charged atoms, and to their ground and excited states. Term symbols usually specify the total for all electrons in an atom, but are sometimes used to describe electrons in a given subshell or set of subshells, for example to describe each open subshell in an atom having more than one. The ground state term symbol for neutral atoms is described, in most cases, by Hund's rules. Neutral atoms of the chemical elements have the same term symbol for each column in the s-block and p-block elements, but differ in d-block and f-block elements where the ground-state electron configuration changes within a column, where exceptions to Hund's rules occur. Ground state term symbols for the chemical elements are given below.

Term symbols are also used to describe angular momentum quantum numbers for atomic nuclei and for molecules. For molecular term symbols , Greek letters are used to designate the component of orbital angular momenta along the molecular axis.

The use of the word term for an atom's electronic state is based on the Rydberg–Ritz combination principle, an empirical observation that the wavenumbers of spectral lines can be expressed as the difference of two terms. This was later summarized by the Bohr model, which identified the terms with quantized energy levels, and the spectral wavenumbers of these levels with photon energies.

Tables of atomic energy levels identified by their term symbols are available for atoms and ions in ground and excited states from the National Institute of Standards and Technology (NIST). [1]

Term symbols with LS coupling

The usual atomic term symbols assume LS coupling (also known as Russell–Saunders coupling), in which the atom's total spin quantum number S and the total orbital angular momentum quantum number L are "good quantum numbers". (Russell–Saunders coupling is named after Henry Norris Russell and Frederick Albert Saunders, who described it in 1925 [2] ). The spin-orbit interaction then couples the total spin and orbital moments to give the total electronic angular momentum quantum number J. Atomic states are then well described by term symbols of the form:

where

The orbital symbols S, P, D and F are derived from the characteristics of the spectroscopic lines corresponding to s, p, d, and f orbitals: sharp, principal, diffuse, and fundamental; the rest are named in alphabetical order from G onwards (omitting J, S and P). When used to describe electronic states of an atom, the term symbol is often written following the electron configuration. For example, 1s22s22p2 3P0 represents the ground state of a neutral carbon atom. The superscript 3 indicates that the spin multiplicity 2S + 1 is 3 (it is a triplet state), so S = 1; the letter "P" is spectroscopic notation for L = 1; and the subscript 0 is the value of J (in this case J = LS). [1]

Small letters refer to individual orbitals or one-electron quantum numbers, whereas capital letters refer to many-electron states or their quantum numbers.

Terminology: terms, levels, and states

For a given electron configuration,

The product as a number of possible states with given S and L is also a number of basis states in the uncoupled representation, where , , , ( and are z-axis components of total spin and total orbital angular momentum respectively) are good quantum numbers whose corresponding operators mutually commute. With given and , the eigenstates in this representation span function space of dimension , as and . In the coupled representation where total angular momentum (spin + orbital) is treated, the associated states (or eigenstates) are and these states span the function space with dimension of

as . Obviously, the dimension of function space in both representations must be the same.

As an example, for , there are (2×1+1)(2×2+1) = 15 different states (= eigenstates in the uncoupled representation) corresponding to the 3D term, of which (2×3+1) = 7 belong to the 3D3 (J = 3) level. The sum of for all levels in the same term equals (2S+1)(2L+1) as the dimensions of both representations must be equal as described above. In this case, J can be 1, 2, or 3, so 3 + 5 + 7 = 15.

Term symbol parity

The parity of a term symbol is calculated as

where is the orbital quantum number for each electron. means even parity while is for odd parity. In fact, only electrons in odd orbitals (with odd) contribute to the total parity: an odd number of electrons in odd orbitals (those with an odd such as in p, f,...) correspond to an odd term symbol, while an even number of electrons in odd orbitals correspond to an even term symbol. The number of electrons in even orbitals is irrelevant as any sum of even numbers is even. For any closed subshell, the number of electrons is which is even, so the summation of in closed subshells is always an even number. The summation of quantum numbers over open (unfilled) subshells of odd orbitals ( odd) determines the parity of the term symbol. If the number of electrons in this reduced summation is odd (even) then the parity is also odd (even).

When it is odd, the parity of the term symbol is indicated by a superscript letter "o", otherwise it is omitted:

2Po
12
has odd parity, but 3P0 has even parity.

Alternatively, parity may be indicated with a subscript letter "g" or "u", standing for gerade (German for "even") or ungerade ("odd"):

2P12,u for odd parity, and 3P0,g for even.

Ground state term symbol

It is relatively easy to predict the term symbol for the ground state of an atom using Hund's rules. It corresponds to a state with maximum S and L.

  1. Start with the most stable electron configuration. Full shells and subshells do not contribute to the overall angular momentum, so they are discarded.
    • If all shells and subshells are full then the term symbol is 1S0.
  2. Distribute the electrons in the available orbitals, following the Pauli exclusion principle.
    • Conventionally, put 1 electron into orbital with highest m and then continue filling other orbitals in descending m order with one electron each, until you are out of electrons, or all orbitals in the subshell have one electron. Assign, again conventionally, all these electrons a value +12 of quantum magnetic spin number ms.
    • If there are remaining electrons, put them in orbitals in the same order as before, but now assigning ms = −12 to them.
  3. The overall S is calculated by adding the ms values for each electron. The overall S is then 12 times the number of unpaired electrons.
  4. The overall L is calculated by adding the values for each electron (so if there are two electrons in the same orbital, add twice that orbital's ).
  5. Calculate J as
    • if less than half of the subshell is occupied, take the minimum value J = |LS|;
    • if more than half-filled, take the maximum value J = L + S;
    • if the subshell is half-filled, then L will be 0, so J = S.

As an example, in the case of fluorine, the electronic configuration is 1s22s22p5.

  1. Discard the full subshells and keep the 2p5 part. So there are five electrons to place in subshell p ().
  2. There are three orbitals () that can hold up to electrons. The first three electrons can take ms = 12 (↑) but the Pauli exclusion principle forces the next two to have ms = −12 (↓) because they go to already occupied orbitals.
    +10−1
    ↑↓↑↓
  3. S = 12 + 12 + 121212 = 12;
  4. L = 1 + 0 − 1 + 1 + 0 = 1, which is "P" in spectroscopic notation.
  5. As fluorine 2p subshell is more than half filled, J = L + S = 32. Its ground state term symbol is then 2S+1LJ = 2P32.

Atomic term symbols of the chemical elements

In the periodic table, because atoms of elements in a column usually have the same outer electron structure, and always have the same electron structure in the "s-block" and "p-block" elements (see block (periodic table)), all elements may share the same ground state term symbol for the column. Thus, hydrogen and the alkali metals are all 2S12, the alkaline earth metals are 1S0, the boron column elements are 2P12, the carbon column elements are 3P0, the pnictogens are 4S32, the chalcogens are 3P2, the halogens are 2P32, and the inert gases are 1S0, per the rule for full shells and subshells stated above.

Term symbols for the ground states of most chemical elements [3] are given in the collapsed table below. [4] In the d-block and f-block, the term symbols are not always the same for elements in the same column of the periodic table, because open shells of several d or f electrons have several closely spaced terms whose energy ordering is often perturbed by the addition of an extra complete shell to form the next element in the column.

For example, the table shows that the first pair of vertically adjacent atoms with different ground-state term symbols are V and Nb. The 6D12 ground state of Nb corresponds to an excited state of V 2112 cm−1 above the 4F32 ground state of V, which in turn corresponds to an excited state of Nb 1143 cm−1 above the Nb ground state. [1] These energy differences are small compared to the 15158 cm−1 difference between the ground and first excited state of Ca, [1] which is the last element before V with no d electrons.

Term symbols for an electron configuration

The process to calculate all possible term symbols for a given electron configuration is somewhat longer.

Case of three equivalent electrons

  • For three equivalent electrons (with the same orbital quantum number ), there is also a general formula (denoted by below) to count the number of any allowed terms with total orbital quantum number L and total spin quantum number S.

    where the floor function denotes the greatest integer not exceeding x.

    The detailed proof can be found in Renjun Xu's original paper. [5]
  • For a general electronic configuration of , namely k equivalent electrons occupying one subshell, the general treatment, and computer code can also be found in this paper. [5]

Alternative method using group theory

For configurations with at most two electrons (or holes) per subshell, an alternative and much quicker method of arriving at the same result can be obtained from group theory. The configuration 2p2 has the symmetry of the following direct product in the full rotation group:

Γ(1) × Γ(1) = Γ(0) + [Γ(1)] + Γ(2),

which, using the familiar labels Γ(0) = S, Γ(1) = P and Γ(2) = D, can be written as

P × P = S + [P] + D.

The square brackets enclose the anti-symmetric square. Hence the 2p2 configuration has components with the following symmetries:

S + D (from the symmetric square and hence having symmetric spatial wavefunctions);
P (from the anti-symmetric square and hence having an anti-symmetric spatial wavefunction).

The Pauli principle and the requirement for electrons to be described by anti-symmetric wavefunctions imply that only the following combinations of spatial and spin symmetry are allowed:

1S + 1D (spatially symmetric, spin anti-symmetric)
3P (spatially anti-symmetric, spin symmetric).

Then one can move to step five in the procedure above, applying Hund's rules.

The group theory method can be carried out for other such configurations, like 3d2, using the general formula

Γ(j) × Γ(j) = Γ(2j) + Γ(2j−2) + ⋯ + Γ(0) + [Γ(2j−1) + ⋯ + Γ(1)].

The symmetric square will give rise to singlets (such as 1S, 1D, & 1G), while the anti-symmetric square gives rise to triplets (such as 3P & 3F).

More generally, one can use

Γ(j) × Γ(k) = Γ(j+k) + Γ(j+k−1) + ⋯ + Γ(|jk|)

where, since the product is not a square, it is not split into symmetric and anti-symmetric parts. Where two electrons come from inequivalent orbitals, both a singlet and a triplet are allowed in each case. [6]

Summary of various coupling schemes and corresponding term symbols

Basic concepts for all coupling schemes:

LS coupling (Russell–Saunders coupling)

jj Coupling

J1L2 coupling

LS1 coupling

Most famous coupling schemes are introduced here but these schemes can be mixed to express the energy state of an atom. This summary is based on .

Racah notation and Paschen notation

These are notations for describing states of singly excited atoms, especially noble gas atoms. Racah notation is basically a combination of LS or Russell–Saunders coupling and J1L2 coupling. LS coupling is for a parent ion and J1L2 coupling is for a coupling of the parent ion and the excited electron. The parent ion is an unexcited part of the atom. For example, in Ar atom excited from a ground state ...3p6 to an excited state ...3p54p in electronic configuration, 3p5 is for the parent ion while 4p is for the excited electron. [8]

In Racah notation, states of excited atoms are denoted as . Quantities with a subscript 1 are for the parent ion, n and are principal and orbital quantum numbers for the excited electron, K and J are quantum numbers for and where and are orbital angular momentum and spin for the excited electron respectively. “o” represents a parity of excited atom. For an inert (noble) gas atom, usual excited states are Np5nℓ where N = 2, 3, 4, 5, 6 for Ne, Ar, Kr, Xe, Rn, respectively in order. Since the parent ion can only be 2P1/2 or 2P3/2, the notation can be shortened to or , where nℓ means the parent ion is in 2P3/2 while nℓ′ is for the parent ion in 2P1/2 state.

Paschen notation is a somewhat odd notation; it is an old notation made to attempt to fit an emission spectrum of neon to a hydrogen-like theory. It has a rather simple structure to indicate energy levels of an excited atom. The energy levels are denoted as n′ℓ#. is just an orbital quantum number of the excited electron. n′ℓ is written in a way that 1s for (n = N + 1, = 0), 2p for (n = N + 1, = 1), 2s for (n = N + 2, = 0), 3p for (n = N + 2, = 1), 3s for (n = N + 3, = 0), etc. Rules of writing n′ℓ from the lowest electronic configuration of the excited electron are: (1) is written first, (2) n′ is consecutively written from 1 and the relation of = n′ − 1, n′ − 2, ... , 0 (like a relation between n and ) is kept. n′ℓ is an attempt to describe electronic configuration of the excited electron in a way of describing electronic configuration of hydrogen atom. # is an additional number denoted to each energy level of given n′ℓ (there can be multiple energy levels of given electronic configuration, denoted by the term symbol). # denotes each level in order, for example, # = 10 is for a lower energy level than # = 9 level and # = 1 is for the highest level in a given n′ℓ. An example of Paschen notation is below.

Electronic configuration of Neonn′ℓElectronic configuration of Argonn′ℓ
1s22s22p6Ground state[Ne]3s23p6Ground state
1s22s22p53s11s[Ne]3s23p54s11s
1s22s22p53p12p[Ne]3s23p54p12p
1s22s22p54s12s[Ne]3s23p55s12s
1s22s22p54p13p[Ne]3s23p55p13p
1s22s22p55s13s[Ne]3s23p56s13s

See also

Notes

  1. There is no official convention for naming orbital angular momentum values greater than 20 (symbol Z) but they are rarely needed. Some authors use Greek letters (α, β, γ, ...) after Z.

Related Research Articles

<span class="mw-page-title-main">Atomic orbital</span> Function describing an electron in an atom

In quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a nucleus of a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

<span class="mw-page-title-main">Energy level</span> Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Azimuthal quantum number</span> Quantum number denoting orbital angular momentum

In quantum mechanics, the azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number distinguishes the orbitals available within a given subshell of an atom. It specifies the component of the orbital angular momentum that lies along a given axis, conventionally called the z-axis, so it describes the orientation of the orbital in space. The spin magnetic quantum numberms specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 12, and ms is either +12 or −12, often called "spin-up" and "spin-down", or α and β. The term magnetic in the name refers to the magnetic dipole moment associated with each type of angular momentum, so states having different magnetic quantum numbers shift in energy in a magnetic field according to the Zeeman effect.

<span class="mw-page-title-main">Fine structure</span> Details in the emission spectrum of an atom

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

In physics and chemistry, the spin quantum number is a quantum number that describes the intrinsic angular momentum of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons.

In quantum mechanics, angular momentum coupling is the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation. In both cases the separate angular momenta are no longer constants of motion, but the sum of the two angular momenta usually still is. Angular momentum coupling in atoms is of importance in atomic spectroscopy. Angular momentum coupling of electron spins is of importance in quantum chemistry. Also in the nuclear shell model angular momentum coupling is ubiquitous.

<span class="mw-page-title-main">Aufbau principle</span> Principle of atomic physics

In atomic physics and quantum chemistry, the Aufbau principle, also called the Aufbau rule, states that in the ground state of an atom or ion, electrons first fill subshells of the lowest available energy, then fill subshells of higher energy. For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s2 2s2 2p6 3s2 3p3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, and so on.

In physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

<span class="mw-page-title-main">Hund's rules</span> Rules to determine the ground state of an atom

In atomic physics and quantum chemistry, Hund's rules refers to a set of rules that German physicist Friedrich Hund formulated around 1925, which are used to determine the term symbol that corresponds to the ground state of a multi-electron atom. The first rule is especially important in chemistry, where it is often referred to simply as Hund's Rule.

In molecular physics, the molecular term symbol is a shorthand expression of the group representation and angular momenta that characterize the state of a molecule, i.e. its electronic quantum state which is an eigenstate of the electronic molecular Hamiltonian. It is the equivalent of the term symbol for the atomic case. However, the following presentation is restricted to the case of homonuclear diatomic molecules, or other symmetric molecules with an inversion centre. For heteronuclear diatomic molecules, the u/g symbol does not correspond to any exact symmetry of the electronic molecular Hamiltonian. In the case of less symmetric molecules the molecular term symbol contains the symbol of the group representation to which the molecular electronic state belongs.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

In quantum chemistry, a configuration state function (CSF), is a symmetry-adapted linear combination of Slater determinants. A CSF must not be confused with a configuration. In general, one configuration gives rise to several CSFs; all have the same total quantum numbers for spin and spatial parts but differ in their intermediate couplings.

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values. When applied to a mathematical representation of the state of a system, yields the same state multiplied by its angular momentum value if the state is an eigenstate. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.

In rotational-vibrational and electronic spectroscopy of diatomic molecules, Hund's coupling cases are idealized descriptions of rotational states in which specific terms in the molecular Hamiltonian and involving couplings between angular momenta are assumed to dominate over all other terms. There are five cases, proposed by Friedrich Hund in 1926-27 and traditionally denoted by the letters (a) through (e). Most diatomic molecules are somewhere between the idealized cases (a) and (b).

References

  1. 1 2 3 4 NIST Atomic Spectrum Database For example, to display the levels for a neutral carbon atom, enter "C I" or "C 0" in the "Spectrum" box and click "Retrieve data".
  2. Russell, H. N.; Saunders, F. A. (1925) [January 1925]. "New Regularities in the Spectra of the Alkaline Earths". SAO/NASA Astrophysics Data System (ADS). Astrophysical Journal. 61. adsabs.harvard.edu/: 38. Bibcode:1925ApJ....61...38R. doi:10.1086/142872 . Retrieved December 13, 2020 via harvard.edu.
  3. "NIST Atomic Spectra Database Ionization Energies Form". NIST Physical Measurement Laboratory. National Institute of Standards and Technology (NIST). October 2018. Retrieved 28 January 2019. This form provides access to NIST critically evaluated data on ground states and ionization energies of atoms and atomic ions.
  4. For the sources for these term symbols in the case of the heaviest elements, see Template:Infobox element/symbol-to-electron-configuration/term-symbol.
  5. 1 2 Xu, Renjun; Zhenwen, Dai (2006). "Alternative mathematical technique to determine LS spectral terms". Journal of Physics B: Atomic, Molecular and Optical Physics. 39 (16): 3221–3239. arXiv: physics/0510267 . Bibcode:2006JPhB...39.3221X. doi:10.1088/0953-4075/39/16/007. S2CID   2422425.
  6. McDaniel, Darl H. (1977). "Spin factoring as an aid in the determination of spectroscopic terms". Journal of Chemical Education. 54 (3): 147. Bibcode:1977JChEd..54..147M. doi:10.1021/ed054p147.
  7. "Atomic Spectroscopy - Different Coupling Scheme 9. Notations for Different Coupling Schemes". Nist. National Institute of Standards and Technology (NIST). 1 November 2017. Retrieved 31 January 2019.
  8. "APPENDIX 1 - Coupling Schemes and Notation" (PDF). University of Toronto: Advanced Physics Laboratory - Course Homepage. Retrieved 5 Nov 2017.