Group 8 element

Last updated
Group 8 in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
group 7    group 9
IUPAC group number 8
Name by elementiron group (nonstandard)
CAS group number
(US, pattern A-B-A)
part of VIIIB
old IUPAC number
(Europe, pattern A-B)
part of VIII

  Period
4
Iron electrolytic and 1cm3 cube.jpg
Iron (Fe)
26 Transition metal
5
Ruthenium a half bar.jpg
Ruthenium (Ru)
44 Transition metal
6
Osmium-crystals 2.jpg
Osmium (Os)
76 Transition metal
7 Hassium (Hs)
108 Transition metal

Legend

primordial element
synthetic element
Atomic number color:
black=solid

Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). [1] "Group 8" is the modern standard designation for this group, adopted by the IUPAC in 1990. [1] It should not be confused with "group VIIIA" in the CAS system, which is group 18 (current IUPAC), the noble gases. In the older group naming systems, this group was combined with groups 9 and 10 and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table). The elements in this group are all transition metals that lie in the d-block of the periodic table.

Contents

While groups (columns) of the periodic table are usually named after their lightest member (as in "the oxygen group" for group 16), iron group has historically been used differently; most often, it means a set of adjacent elements on period (row) 4 of the table that includes iron, such as chromium, manganese, iron, cobalt, and nickel, or only the last three, or some other set, depending on the context.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior.

Basic properties

Z Element No. of electrons
per shell
M.P.B.P.Year of
discovery
Discoverer
26 Iron 2, 8, 14, 21811 K
1538 °C
3134 K
2862 °C
<3000 BCEUnknown
44 Ruthenium 2, 8, 18, 15, 12607 K
2334 °C
4423 K
4150 °C
1844 K. E. Claus
76 Osmium 2, 8, 18, 32, 14, 23306 K
3033 °C
5285 K
5012 °C
1803 S. Tennant and
W. H. Wollaston
108 Hassium 2, 8, 18, 32, 32, 14, 21984 P. Armbruster and
G. Münzenberg

The following is copied from the pages of Iron, Ruthenium, Osmium, and Hassium respectively.

Pristine and smooth pure iron surfaces are a mirror-like silvery-gray. Iron reacts readily with oxygen and water to produce brown-to-black hydrated iron oxides, commonly known as rust. Unlike the oxides of some other metals that form passivating layers, rust occupies more volume than the metal and thus flakes off, exposing more fresh surfaces for corrosion. High-purity irons (e.g. electrolytic iron) are more resistant to corrosion.

Because it hardens platinum and palladium alloys, ruthenium is used in electrical contacts, where a thin film is sufficient to achieve the desired durability. With its similar properties to and lower cost than rhodium, electric contacts are a major use of ruthenium. The ruthenium plate is applied to the electrical contact and electrode base metal by electroplating or sputtering.

Osmium is a hard but brittle metal that remains lustrous even at high temperatures. It has a very low compressibility. Correspondingly, its bulk modulus is extremely high, reported between 395 and 462 GPa, which rivals that of diamond (443 GPa). The hardness of osmium is moderately high at 4 GPa. Because of its hardness, brittleness, low vapor pressure (the lowest of the platinum-group metals), and very high melting point (the fourth highest of all elements, after carbon, tungsten, and rhenium), solid osmium is difficult to machine, form, or work.

Very few properties of hassium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that hassium (and its parents) decays very quickly. A few singular chemistry-related properties have been measured, such as enthalpy of adsorption of hassium tetroxide, but properties of hassium metal remain unknown and only predictions are available. Though despite its radioactivity, chemists have formed hassium tetroxide and sodium hassate(VII) through various means.

Occurrence and production

In terms of mass, iron is the fourth most common element within the Earth's crust. It is found in many minerals, such as hematite, magnetite, and taconite. Iron is commercially produced by heating these minerals in a blast furnace with coke and calcium carbonate. [2]

Ruthenium is a very rare metal in Earth's crust. It is often found in minerals such as pentlandite and pyroxinite. It can be commercially obtained as a waste product from refining nickel. [3]

Osmium is found in osmiridium. It can also be obtained as a waste product from refining nickel. [4]

Hassium is extremely radioactive, and as such is not found naturally in the Earth's crust. It is produced via the bombardment of lead-208 atoms with iron-58 atoms. [5] [6]

Biological role

Iron is a mineral used in the human body that is essential for good health. It is a component in the proteins of hemoglobin and myoglobin, both of which are responsible for transporting oxygen around the body. Iron is a part of some hormones as well. A lack of iron in the body can cause iron deficiency anemia, and an excess of iron in the body can be toxic. [7]

Some ruthenium-containing molecules may be used to fight cancer. [8] Normally, however, ruthenium plays no role in the human body. [3]

Both osmium and hassium have no known biological roles. [4] [5]

Related Research Articles

A chemical element is a chemical substance that cannot be broken down into other substances. The basic particle that constitutes a chemical element is the atom, and each chemical element is distinguished by the number of protons in the nuclei of its atoms, known as its atomic number. For example, oxygen has an atomic number of 8, meaning that each oxygen atom has 8 protons in its nucleus. This is in contrast to chemical compounds and mixtures, which contain atoms with more than one atomic number.

<span class="mw-page-title-main">Hassium</span> Chemical element, symbol Hs and atomic number 108

Hassium is a chemical element; it has symbol Hs and atomic number 108. Hassium is highly radioactive: its most stable known isotopes have half-lives of approximately ten seconds. One of its isotopes, 270Hs, has magic numbers of both protons and neutrons for deformed nuclei, which gives it greater stability against spontaneous fission. Hassium is a superheavy element; it has been produced in a laboratory only in very small quantities by fusing heavy nuclei with lighter ones. Natural occurrences of the element have been hypothesised but never found.

<span class="mw-page-title-main">Iridium</span> Chemical element, symbol Ir and atomic number 77

Iridium is a chemical element; it has symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal with a density of 22.56 g/cm3 (0.815 lb/cu in) as defined by experimental X-ray crystallography. It is one of the most corrosion-resistant metals, even at temperatures as high as 2,000 °C (3,630 °F). However, corrosion-resistance is not quantifiable in absolute terms; although only certain molten salts and halogens are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable, whereas gold dust is not flammable but can be attacked by substances that iridium resists, such as aqua regia.

<span class="mw-page-title-main">Metal</span> Type of material

A metal is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typically ductile and malleable. These properties are the result of the metallic bond between the atoms or molecules of the metal.

<span class="mw-page-title-main">Osmium</span> Chemical element, symbol Os and atomic number 76

Osmium is a chemical element; it has symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, mostly in platinum ores. Osmium is the densest naturally occurring element. When experimentally measured using X-ray crystallography, it has a density of 22.59 g/cm3. Manufacturers use its alloys with platinum, iridium, and other platinum-group metals to make fountain pen nib tipping, electrical contacts, and in other applications that require extreme durability and hardness.

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Ruthenium</span> Chemical element, symbol Ru and atomic number 44

Ruthenium is a chemical element; it has symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Russian-born scientist of Baltic-German ancestry Karl Ernst Claus discovered the element in 1844 at Kazan State University and named ruthenium in honor of Russia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 to some 35.5 tonnes in 2017. Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario, and in pyroxenite deposits in South Africa.

<span class="mw-page-title-main">Group 6 element</span> Group of chemical elements

Group 6, numbered by IUPAC style, is a group of elements in the periodic table. Its members are chromium (Cr), molybdenum (Mo), tungsten (W), and seaborgium (Sg). These are all transition metals and chromium, molybdenum and tungsten are refractory metals.

<span class="mw-page-title-main">Group (periodic table)</span> Column of elements in the periodic table of the chemical elements

In chemistry, a group is a column of elements in the periodic table of the chemical elements. There are 18 numbered groups in the periodic table; the 14 f-block columns, between groups 2 and 3, are not numbered. The elements in a group have similar physical or chemical characteristics of the outermost electron shells of their atoms, because most chemical properties are dominated by the orbital location of the outermost electron.

A period 5 element is one of the chemical elements in the fifth row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fifth period contains 18 elements, beginning with rubidium and ending with xenon. As a rule, period 5 elements fill their 5s shells first, then their 4d, and 5p shells, in that order; however, there are exceptions, such as rhodium.

<span class="mw-page-title-main">Noble metal</span> Metallic elements that are nearly chemically inert

A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals are most often so classified. Silver, copper and mercury are sometimes included as noble metals, however less often as each of these usually occurs in nature combined with sulfur.

A period 4 element is one of the chemical elements in the fourth row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fourth period contains 18 elements beginning with potassium and ending with krypton – one element for each of the eighteen groups. It sees the first appearance of d-block in the table.

A period 6 element is one of the chemical elements in the sixth row (or period) of the periodic table of the chemical elements, including the lanthanides. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The sixth period contains 32 elements, tied for the most with period 7, beginning with caesium and ending with radon. Lead is currently the last stable element; all subsequent elements are radioactive. For bismuth, however, its only primordial isotope, 209Bi, has a half-life of more than 1019 years, over a billion times longer than the current age of the universe. As a rule, period 6 elements fill their 6s shells first, then their 4f, 5d, and 6p shells, in that order; however, there are exceptions, such as gold.

Chemistry is the physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions.

The Goldschmidt classification, developed by Victor Goldschmidt (1888–1947), is a geochemical classification which groups the chemical elements within the Earth according to their preferred host phases into lithophile (rock-loving), siderophile (iron-loving), chalcophile, and atmophile (gas-loving) or volatile.

The platinum-group metals (PGMs), also known as the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs), are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block.

<span class="mw-page-title-main">Group 4 element</span> Group of chemical elements

Group 4 is the second group of transition metals in the periodic table. It contains the four elements titanium (Ti), zirconium (Zr), hafnium (Hf), and rutherfordium (Rf). The group is also called the titanium group or titanium family after its lightest member.

<span class="mw-page-title-main">Group 9 element</span> Group of chemical elements

Group 9, by modern IUPAC numbering, is a group (column) of chemical elements in the d-block of the periodic table. Members of Group 9 include cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These elements are among the rarest of the transition metals.

Osmium compounds are compounds containing the element osmium (Os). Osmium forms compounds with oxidation states ranging from −2 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9 and is encountered only in xenon, ruthenium, hassium, iridium, and plutonium. The oxidation states −1 and −2 represented by the two reactive compounds Na
2
[Os
4
(CO)
13
]
and Na
2
[Os(CO)
4
]
are used in the synthesis of osmium cluster compounds.

<span class="mw-page-title-main">Hassium tetroxide</span> Chemical compound

Hassium tetroxide (also hassium(VIII) oxide) is the inorganic compound with the formula HsO4. It is the highest oxide of hassium, a transactinide transition metal. It has little use outside of scientific interest, where it is often studied in comparison to osmium tetroxide and ruthenium tetroxide, its lighter octavalent group 8 element analogs.

References

  1. 1 2 Leigh, Geoffrey J. (1990). Nomenclature of inorganic chemistry: recommendations 1990. Union internationale de chimie pure et appliquée. Oxford London Edinburgh: Blackwell scientific publ. ISBN   978-0-632-02494-0.
  2. "Iron - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2023-10-04.
  3. 1 2 "Ruthenium - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2023-10-04.
  4. 1 2 "Osmium - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2023-10-04.
  5. 1 2 "Hassium - Element information, properties and uses | Periodic Table". www.rsc.org. Retrieved 2023-10-04.
  6. "Hassium | Hs (Element) - PubChem". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-10-04.
  7. "Office of Dietary Supplements - Iron". ods.od.nih.gov. Retrieved 2023-10-04.
  8. Skoczynska, Anna; Lewinski, Andrzej; Pokora, Mateusz; Paneth, Piotr; Budzisz, Elzbieta (2023-05-30). "An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru(II)/(III) Complexes". International Journal of Molecular Sciences. 24 (11): 9512. doi: 10.3390/ijms24119512 . ISSN   1422-0067. PMC   10253973 . PMID   37298471.