The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]
longitudinal, m/s | transversal, m/s | extensional, m/s | notes | |
---|---|---|---|---|
3 Li lithium | ||||
use | 6000 | 20 °C | ||
WEL | 6000 | |||
4 Be beryllium | ||||
use | 12890 | 8880 | 12870 | room temperature |
CRC | 12890 | 8880 | 12870 | |
WEL | 13000 | |||
5 B boron | ||||
use | 16200 | 20 °C | ||
WEL | 16200 | |||
6 C carbon | ||||
use | ||||
WEL | 18350 | |||
11 Na sodium | ||||
use | 3200 | 20 °C | ||
WEL | 3200 | |||
12 Mg magnesium | ||||
use | 5770 | 3050 | 4940 | room temperature, annealed |
CRC | 5770 | 3050 | 4940 | annealed |
WEL | 4602 | |||
13 Al aluminium | ||||
use | 6420 | 3040 | 5000 | room temperature, rolled |
CRC | 6420 | 3040 | 5000 | rolled |
WEL | 5100 | |||
14 Si silicon | ||||
use | 8433 | 5843 | ||
Cij | 8433 | 5843 | from C11=165.64 GPa, C44=79.51 GPa, ro1=2.329 g/cm3 [2] | |
WEL | 2200 | 20 °C - note: probably wrong (see talk) | ||
19 K potassium | ||||
use | 2000 | 20 °C | ||
WEL | 2000 | |||
20 Ca calcium | ||||
use | 3810 | 20 °C | ||
WEL | 3810 | |||
22 Ti titanium | ||||
use | 6070 | 3125 | 5090 | room temperature |
CRC | 6070 | 3125 | 5090 | |
WEL | 4140 | |||
23 V vanadium | ||||
use | 4560 | 20 °C | ||
WEL | 4560 | |||
24 Cr chromium | ||||
use | 6608 | 4005 | 5940 | 20 °C |
WEL | 5940 | |||
25 Mn manganese | ||||
use | 5150 | 20 °C | ||
WEL | 5150 | |||
26 Fe iron | ||||
use | 5950 | 3240 | 5120 | room temperature, electrolytic |
CRC | 4994 | 2809 | 4480 | cast |
CRC | 5950 | 3240 | 5120 | electrolytic |
CRC | 5960 | 3240 | 5200 | Armco |
WEL | 4910 | |||
27 Co cobalt | ||||
use | 4720 | 20 °C | ||
WEL | 4720 | |||
28 Ni nickel | ||||
use | 6040 | 3000 | 4900 | room temperature |
CRC | 6040 | 3000 | 4900 | |
WEL | 4970 | |||
29 Cu copper | ||||
use | 4760 | 2325 | 3810 | room temperature, annealed |
CRC | 4760 | 2325 | 3810 | annealed |
CRC | 5010 | 2270 | 3750 | rolled |
WEL | 3570 | |||
30 Zn zinc | ||||
use | 4210 | 2440 | 3850 | room temperature, rolled |
CRC | 4210 | 2440 | 3850 | rolled |
WEL | 3700 | |||
31 Ga gallium | ||||
use | 2740 | 20 °C | ||
WEL | 2740 | |||
32 Ge germanium | ||||
use | 5400 | 20 °C | ||
WEL | 5400 | |||
34 Se selenium | ||||
use | 3350 | 20 °C | ||
WEL | 3350 | |||
37 Rb rubidium | ||||
use | 1300 | 20 °C | ||
WEL | 1300 | |||
39 Y yttrium | ||||
use | 3300 | 20 °C | ||
WEL | 3300 | |||
40 Zr zirconium | ||||
use | 3800 | 20 °C | ||
WEL | 3800 | |||
41 Nb niobium | ||||
use | 3480 | 20 °C | ||
WEL | 3480 | |||
42 Mo molybdenum | ||||
use | 6250 | 3350 | 5400 | room temperature |
CRC | 6250 | 3350 | 5400 | |
WEL | 6190 | |||
44 Ru ruthenium | ||||
use | 5970 | 20 °C | ||
WEL | 5970 | |||
45 Rh rhodium | ||||
use | 4700 | 20 °C | ||
WEL | 4700 | |||
46 Pd palladium | ||||
use | 3070 | 20 °C | ||
WEL | 3070 | |||
47 Ag silver | ||||
use | 3650 | 1610 | 2680 | room temperature |
CRC | 3650 | 1610 | 2680 | |
WEL | 2600 | |||
48 Cd cadmium | ||||
use | 2310 | 20 °C | ||
WEL | 2310 | |||
49 In indium | ||||
use | 1215 | 20 °C | ||
WEL | 1215 | |||
50 Sn tin | ||||
use | 3320 | 1670 | 2730 | room temperature, rolled |
CRC | 3320 | 1670 | 2730 | rolled |
WEL | 2500 | |||
51 Sb antimony | ||||
use | 3420 | 20 °C | ||
WEL | 3420 | |||
52 Te tellurium | ||||
use | 2610 | 20 °C | ||
WEL | 2610 | |||
56 Ba barium | ||||
use | 1620 | 20 °C | ||
WEL | 1620 | |||
57 La lanthanum | ||||
use | 2475 | 20 °C | ||
WEL | 2475 | |||
58 Ce cerium | ||||
use | 2100 | 20 °C | ||
WEL | 2100 | |||
59 Pr praseodymium | ||||
use | 2280 | 20 °C | ||
WEL | 2280 | |||
60 Nd neodymium | ||||
use | 2330 | 20 °C | ||
WEL | 2330 | |||
62 Sm samarium | ||||
use | 2130 | 20 °C | ||
WEL | 2130 | |||
64 Gd gadolinium | ||||
use | 2680 | 20 °C | ||
WEL | 2680 | |||
65 Tb terbium | ||||
use | 2620 | 20 °C | ||
WEL | 2620 | |||
66 Dy dysprosium | ||||
use | 2710 | 20 °C | ||
WEL | 2710 | |||
67 Ho holmium | ||||
use | 2760 | 20 °C | ||
WEL | 2760 | |||
68 Er erbium | ||||
use | 2830 | 20 °C | ||
WEL | 2830 | |||
70 Yb ytterbium | ||||
use | 1590 | 20 °C | ||
WEL | 1590 | |||
72 Hf hafnium | ||||
use | 3010 | 20 °C | ||
WEL | 3010 | |||
73 Ta tantalum | ||||
use | 3400 | 20 °C | ||
WEL | 3400 | |||
74 W tungsten | ||||
use | 5220 | 2890 | 4620 | room temperature, annealed |
CRC | 5220 | 2890 | 4620 | annealed |
CRC | 5410 | 2640 | 4320 | drawn |
WEL | 5174 | |||
75 Re rhenium | ||||
use | 4700 | 20 °C | ||
WEL | 4700 | |||
76 Os osmium | ||||
use | 4940 | 20 °C | ||
WEL | 4940 | |||
77 Ir iridium | ||||
use | 4825 | 20 °C | ||
WEL | 4825 | |||
78 Pt platinum | ||||
use | 3830 | 1680 | 2800 | room temperature. Calculated using Wikipedia reported values for density (21450 kg/m3), Young's Modulus (167 GPa), and Poisson's ratio (0.38) |
CRC | 3260 | 1730 | 2800 | CRC cites American Institute of Physics Handbook (AIPH) table 3f-2 for this value, but in AIPH table 2f-6 there are elastic constants reported that yield 3700,1570, 2620 |
WEL | 2680 | |||
AIPH | 3700 | 1570 | 2620 | Table 2f-6. Calculated from Young's modulus of 147 GPa (lower than commonly accepted for Platinum), Poisson's ratio of 0.39, density of 21370 kg/m3 |
79 Au gold | ||||
use | 3240 | 1200 | 2030 | room temperature, hard-drawn |
CRC | 3240 | 1200 | 2030 | hard-drawn |
WEL | 1740 | |||
81 Tl thallium | ||||
use | 818 | 20 °C | ||
WEL | 818 | |||
82 Pb lead | ||||
use | 2160 | 700 | 1190 | room temperature, annealed |
CRC | 2160 | 700 | 1190 | annealed |
CRC | 1960 | 690 | 1210 | rolled |
WEL | 1260 | |||
83 Bi bismuth | ||||
use | 1790 | 20 °C | ||
WEL | 1790 | |||
90 Th thorium | ||||
use | 2490 | 20 °C | ||
WEL | 2490 | |||
92 U uranium | ||||
use | 3155 | 20 °C | ||
WEL | 3155 | |||
94 Pu plutonium | ||||
use | 2260 | 20 °C | ||
WEL | 2260 |
m/s | notes | |
---|---|---|
1 H hydrogen (gas) | ||
use | 1310 | 27 °C |
CRC | 1310 | 27 °C |
WEL | 1270 | |
Zuckerwar | 1270 | 20 °C, 1 atm |
CRC | 890 | deuterium, 0 °C |
1 H hydrogen (liquid) | ||
use | 1101 | −252.9 °C |
CRC | 1101 | −252.9 °C |
2 He helium (gas) | ||
use | 965 | 0 °C |
CRC | 965 | 0 °C |
Zuckerwar | 1007 | 20 °C, 1 atm |
WEL | 970 | |
2 He helium (liquid) | ||
use | 180 | −268.9 °C |
CRC | 180 | −268.9 °C |
7 N nitrogen (gas) | ||
use | 353 | 27 °C |
CRC | 353 | 27 °C |
Zuckerwar | 349 | 20 °C, 1 atm |
WEL | 333.6 | |
7 N nitrogen (liquid) | ||
use | 939 | −195.8 °C |
CRC | 939 | −195.8 °C |
8 O oxygen (gas) | ||
use | 330 | 27 °C |
CRC | 330 | 27 °C |
Zuckerwar | 326 | 20 °C, 1 atm |
WEL | 317.5 | |
8 O oxygen (liquid) | ||
use | 906 | −183.0 °C |
CRC | 906 | −183.0 °C |
10 Ne neon (gas) | ||
use | 435 | 0 °C |
CRC | 435 | 0 °C |
WEL | 936 (presumably for liquid?) | |
17 Cl chlorine (gas) | ||
use | 206 | 0 °C |
CRC | 206 | 0 °C |
WEL | 206 | |
18 Ar argon (gas) | ||
use | 323 | 27 °C |
CRC | 323 | 27 °C |
Zuckerwar | 319 | 20 °C, 1 atm |
WEL | 319 | |
18 Ar argon (liquid) | ||
use | 813 | −185.9 °C |
CRC | 813 | −185.9 °C |
36 Kr krypton (gas) | ||
use | 221 | 20 °C |
Zuckerwar | 221 | 20 °C, 1 atm |
talk | 220 ± 1, prelim. experimental value | 23 °C, 101.3 kPa |
36 Kr krypton (liquid) | ||
use | 1120 | |
88RAB | 1120 | |
WEL | 1120 | |
54 Xe xenon (gas) | ||
use | 178 | 20 °C, 1 atm |
Zuckerwar | 178 | 20 °C, 1 atm |
54 Xe xenon (liquid) | ||
use | 1090 | |
88RAB | 1090 | |
WEL | 1090 | |
80 Hg mercury (liquid) | ||
use | 1451.4 | 20 °C |
CR2 | 1460.8 | 0 °C |
CR2 | 1451.4 | 20 °C |
CRC | 1450 | 25 °C |
WEL | 1407 |
In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material. It has units of m2/s. Thermal diffusivity is usually denoted by lowercase alpha, but a, h, κ (kappa), K, and D are also used.
The poise is the unit of dynamic viscosity in the centimetre–gram–second system of units (CGS). It is named after Jean Léonard Marie Poiseuille. The centipoise is more commonly used than the poise itself.
Elastic properties describe the reversible deformation of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Saline water is water that contains a high concentration of dissolved salts. On the United States Geological Survey (USGS) salinity scale, saline water is saltier than brackish water, but less salty than brine. The salt concentration is usually expressed in parts per thousand and parts per million (ppm). The USGS salinity scale defines three levels of saline water. The salt concentration in slightly saline water is 1,000 to 3,000 ppm (0.1–0.3%); in moderately saline water is 3,000 to 10,000 ppm (0.3–1%); and in highly saline water is 10,000 to 35,000 ppm (1–3.5%). Seawater has a salinity of roughly 35,000 ppm, equivalent to 35 grams of salt per one liter of water. The saturation level is only nominally dependent on the temperature of the water. At 20 °C (68 °F) one liter of water can dissolve about 357 grams of salt, a concentration of 26.3 percent by weight. At 100 °C (212 °F), the amount of salt that can be dissolved in one liter of water increases to about 391 grams, a concentration of 28.1% w/w.
This page provides supplementary data to the article properties of water.
There are 42 isotopes of polonium (84Po). They range in size from 186 to 227 nucleons. They are all radioactive. 210Po with a half-life of 138.376 days has the longest half-life of any naturally-occurring isotope of polonium and is the most common isotope of polonium. It is also the most easily synthesized polonium isotope. 209Po, which does not occur naturally, has the longest half-life of all isotopes of polonium at 124 years. 209Po can be made by using a cyclotron to bombard bismuth with protons, as can 208Po.
This page provides supplementary chemical data on barium chloride.
This page provides supplementary chemical data on calcium hydroxide.
This page provides supplementary data about the noble gases, which were excluded from the main article to conserve space and preserve focus. Oganesson mostly not included due to the amount of research known about it.
Bromine dioxide is the chemical compound composed of bromine and oxygen with the formula BrO2. It forms unstable yellow to yellow-orange crystals. It was first isolated by R. Schwarz and M. Schmeißer in 1937 and is hypothesized to be important in the atmospheric reaction of bromine with ozone. It is similar to chlorine dioxide, the dioxide of its halogen neighbor one period higher on the periodic table.
As quoted at http://www.webelements.com/ from this source:
As quoted from various sources in an online version of:
As quoted from this source in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Thermal Properties of Mercury
Dwight E. Gray (ed), American Institute of Physics Handbook. McGraw-Hill. Boca Raton, Florida, New York, 1957.