Vapor pressures of the elements (data page)

Last updated

Vapor pressure

P/(Pa)1101002001 k2 k5 k10 k20 k50 k100 k101325
reference
1 H hydrogen
use (T/K)1520
CRC.a (T/°C)-258.6-252.8
KAL (T/K)10 (s)11.4 (s)12.2 (s)13.4 (s)14.516.018.220.3
2 He helium
use (T/K)34
CRC.b (T/°C)-270.6-268.9
KAL (T/K)1.31.661.852.172.482.873.544.22
3 Li lithium
use (T/K)797885995114413371610
CRC.f,k (T/°C)524.3612.3722.1871.21064.31337.1
CR2solid, 298 K to m.p.: log (P/Pa) = 10.673 - 8310 / (T/K)
CR2 (T/K)liquid, m.p. to 1000 K: log (P/Pa) = 10.061 - 8023 / (T/K)
797.4885.4995.3
KAL (T/K)10401145120012751345141515301630
SMI.a (T/K)liquid, 325..725 °C: log (P/Pa) = 9.625 - 7480 / (T/K)
777867981
4 Be beryllium
use (T/K)146216081791202323272742
CRC.b (T/°C)1189 (s)13351518175020542469
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 13.048 - 17020 / (T/K) - 0.4440 log (T/K)
1461.8
CR2 (T/K)liquid, m.p. to 1800 K: log (P/Pa) = 10.792 - 15731 / (T/K)
1606.51789.2
SMI.c,g (T/K)solid, 942..1284 °C: log (P/Pa) = 12.115 - 18220 / (T/K)
1504
SMI.c,g (T/K)liquid, 1284..1582 °C: log (P/Pa) = 11.075 - 16590 / (T/K)
16471828
5 B boron
use (T/K)234825622822314135454072
CRC.b (T/°C)207522892549286832723799
SMI.c (T/K)solid, 1052..1648 °C: log (P/Pa) = 13.255 - 21370 / (T/K)
161217441899
6 C carbon (graphite)
use (T/K)28393048328935723908
CRC.h (T/°C)2566 (s)2775 (s)3016 (s)3299 (s)3635 (s)
7 N nitrogen
use (T/K)374146536277
CRC.a,d (T/°C)-236 (s)-232 (s)-226.8 (s)-220.2 (s)-211.1 (s)-195.9
KAL (T/K)48.1 (s)53.0 (s)55.4 (s)59.0 (s)62.1 (s)65.871.877.4
8 O oxygen
use (T/K)617390
CRC.a,i (T/°C)-211.9-200.5-183.1
KAL (T/K)55.461.364.368.872.777.183.990.2
9 F fluorine
use (T/K)384450586985
CRC.a,d (T/°C)-235 (s)-229.5 (s)-222.9 (s)-214.8-204.3-188.3
KAL (T/K)53586165.368.973.079.385.0
10 Ne neon
use (T/K)121315182127
CRC.b (T/°C)-261 (s)-260 (s)-258 (s)-255 (s)-252 (s)-246.1
KAL (T/K)16.3 (s)18.1 (s)19.0 (s)20.4 (s)21.6 (s)22.9 (s)24.927.1
11 Na sodium
use (T/K)5546176978029461153
CRC.f,k (T/°C)280.6344.2424.3529673880.2
CR2solid, 298 K to m.p.: log (P/Pa) = 10.304 - 5603 / (T/K)
CR2 (T/K)liquid, m.p. to 700 K: log (P/Pa) = 9.710 - 5377 / (T/K)
553.8617.3697.4
KAL (T/K)729807846904954101010951175
SMI.a (T/K)liquid, 158..437 °C: log (P/Pa) = 9.835 - 5480 / (T/K)
557620699
12 Mg magnesium
use (T/K)70177386197111321361
CRC.b (T/°C)428 (s)500 (s)588 (s)6988591088
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 13.495 - 7813 / (T/K) - 0.8253 log (T/K)
700.9772.7861.2892.0
KAL (T/K)891979102510851140120512951375
SMI.a (T/K)solid, 287..605 °C: log (P/Pa) = 10.945 - 7741 / (T/K)
707778865
13 Al aluminium
use (T/K)148216321817205423642790
CRC.b (T/°C)120913591544178120912517
CR2solid, 298 K to m.p.: log (P/Pa) = 14.465 - 17342 / (T/K) - 0.7927 log (T/K)
CR2 (T/K)liquid, m.p. to 1800 K: log (P/Pa) = 10.917 - 16211 / (T/K)
1484.91634.71818.0
KAL (T/K)18852060214022602360243026402790
SMI.c,l (T/K)liquid, 843..1465 °C: log (P/Pa) = 11.115 - 15630 / (T/K)
14061545
14 Si silicon
use (T/K)190821022339263630213537
CRC.b (T/°C)163518292066236327483264
KAL (T/K)23802590269028402970310033103490
SMI.c (T/K)solid, 1024..1410 °C: log (P/Pa) = 12.325 - 19720 / (T/K)
1600
SMI.c (T/K)liquid, 1410..1670 °C: log (P/Pa) = 11.675 - 18550 / (T/K)
17381917
15 P phosphorus (white)
use (T/K)279307342388453549
CRC.c,e (T/°C)6 (s)34 (s)69115180276
KAL (T/K)365398414439460484520.5553.6
15 P phosphorus (red)
use (T/K)455489529576635704
CRC.b,c (T/°C)182 (s)216 (s)256 (s)303 (s)362 (s)431 (s)
16 S sulfur
use (T/K)375408449508591717
CRC.c (T/°C)102 (s)135176235318444
KAL (T/K)462505.7528.0561.3590.1622.5672.4717.8
17 Cl chlorine
use (T/K)128139153170197239
CRC.a (T/°C)-145 (s)-133.7 (s)-120.2 (s)-103.6 (s)-76.1-34.2
KAL (T/K)158 (s)170 (s)176.3187.4197.0207.8224.3239.2
18 Ar argon
use (T/K)4753617187
CRC.a,d,l (T/°C)-226.4 (s)-220.3 (s)-212.4 (s)-201.7 (s)-186.0
KAL (T/K)55.0 (s)60.7 (s)63.6 (s)67.8 (s)71.4 (s)75.4 (s)81.4 (s)87.3
19 K potassium
use (T/K)4735306016978321029
CRC.f,k (T/°C)200.2256.5328424559756.2
CR2solid, 298 K to m.p.: log (P/Pa) = 9.967 - 4646 / (T/K)
CR2 (T/K)liquid, m.p. to 600 K: log (P/Pa) = 9.408 - 4453 / (T/K)
473.3529.6601.1
KAL (T/K)6337047407948418949751050
SMI.a (T/K)liquid, 91..338 °C: log (P/Pa) = 9.485 - 4503 / (T/K)
475531602
20 Ca calcium
use (T/K)8649561071122714431755
CRC.b (T/°C)591 (s)683 (s)798 (s)95411701482
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 15.133 - 9517 / (T/K) - 1.4030 log (T/K)
864.2956.41071.51112.0
KAL (T/K)11051220128013651440152516501765
SMI.a (T/K)408..817 °C: log (P/Pa) = 10.425 - 9055 / (T/K)
8699611075
21 Sc scandium
use (T/K)16451804(2006)(2266)(2613)(3101)
CRC.c (T/°C)1372 (s)1531 (s)1733 (i)1993 (i)2340 (i)2828 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 11.656 - 19721 / (T/K) + 0.2885 log (T/K) - 0.3663 (T/K) 10−3
CR2liquid, m.p. to 2000 K: log (P/Pa) = 10.801 - 17681 / (T/K)
SMI.c (T/K)1058..1804 °C: log (P/Pa) = 11.065 - 18570 / (T/K)
167818452049
22 Ti titanium
use (T/K)19822171(2403)269230643558
CRC.b (T/°C)170918982130 (e)241927913285
CR2solid, 298 K to m.p.: log (P/Pa) = 16.931 - 24991 / (T/K) - 1.3376 log (T/K)
CR2 (T/K)liquid, m.p. to 2400 K: log (P/Pa) = 11.364 - 22747 / (T/K)
2001.72194.8
SMI.c (T/K)solid, 1134..1727 °C: log (P/Pa) = 10.375 - 18640 / (T/K)
17971988
SMI.c (T/K)liquid, 1727..1965 °C: log (P/Pa) = 11.105 - 20110 / (T/K)
2209
23 V vanadium
use (T/K)210122892523281431873679
CRC.b (T/°C)1828 (s)20162250254129143406
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.750 - 27132 / (T/K) - 0.5501 log (T/K)
2099.6
CR2 (T/K)liquid, m.p. to 2500 K: log (P/Pa) = 11.935 - 25011 / (T/K)
2287.22517.5
SMI.c (T/K)1465..2207 °C: log (P/Pa) = 12.445 - 26620 / (T/K)
21392326
24 Cr chromium
use (T/K)165618071991222325302942
CRC.b (T/°C)1383 (s)1534 (s)1718 (s)195022572669
CR2solid, 298 K to 2000 K: log (P/Pa) = 11.806 - 20733 / (T/K) + 0.4391 log (T/K) - 0.4094 (T/K)−3
KAL (T/K)20202180226023702470258027302870
SMI.c,l (T/K)solid, 907..1504 °C: log (P/Pa) = 12.005 - 17560 / (T/K)
146315961755
25 Mn manganese
use (T/K)122813471493169119552333
CRC.b (T/°C)955 (s)1074 (s)1220 (s)141816822060
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 17.811 - 15097 / (T/K) - 1.7896 log (T/K)
1229.21346.61490.0
KAL (T/K)15601710178018901980208022402390
SMI.c (T/K)717..1251 °C: log (P/Pa) = 11.375 - 14100 / (T/K)
124013591504
26 Fe iron
use (T/K)172818902091234626793132
CRC.b (T/°C)1455 (s)16171818207324062859
CR2solid, 298 K to m.p.: log (P/Pa) = 12.106 - 21723 / (T/K) + 0.4536 log (T/K) - 0.5846 (T/K) 10−3
CR2 (T/K)liquid, m.p. to 2100 K: log (P/Pa) = 11.353 - 19574 / (T/K)
1890.72092.8
KAL (T/K)21102290238025002610272028903030
SMI.c,f (T/K)solid, 1094..1535 °C: log (P/Pa) = 11.755 - 20000 / (T/K)
1701
SMI.c,f (T/K)liquid, 1535..1783 °C: log (P/Pa) = 12.535 - 21400 / (T/K)
18552031
27 Co cobalt
use (T/K)179019602165242327553198
CRC.b (T/°C)151716871892215024822925
CR2solid, 298 K to m.p.: log (P/Pa) = 15.982 - 22576 / (T/K) - 1.0280 log (T/K)
CR2 (T/K)liquid, m.p. to 2150 K: log (P/Pa) = 11.494 - 20578 / (T/K)
1790.31960.92167.5
SMI.c (T/K)1249..2056 °C: log (P/Pa) = 11.555 - 21960 / (T/K)
190020812298
28 Ni nickel
use (T/K)178319502154241027413184
CRC.b (T/°C)151016771881213724682911
CR2solid, 298 K to m.p.: log (P/Pa) = 15.563 - 22606 / (T/K) - 0.8717 log (T/K)
CR2 (T/K)liquid, m.p. to 2150 K: log (P/Pa) = 11.672 - 20765 / (T/K)
1779.01945.72146.9
KAL (T/K)22302410250026302740286030303180
SMI.c,qsolid, 1157..1455 °C: log (P/Pa) = 12.405 - 21840 / (T/K)
SMI.c,q (T/K)liquid, 1455..1884 °C: log (P/Pa) = 11.675 - 20600 / (T/K)
176419302129
29 Cu copper
use (T/K)150916611850208924042836
CRC.b (T/°C)123613881577181621312563
CR2solid, 298 K to m.p.: log (P/Pa) = 14.129 - 17748 / (T/K) - 0.7317 log (T/K)
CR2 (T/K)liquid, m.p. to 1850 K: log (P/Pa) = 10.855 - 16415 / (T/K)
1512.21665.71853.8
KAL (T/K)19402110220023202420254027102860
SMI.c,fsolid, 946..1083 °C: log (P/Pa) = 11.935 - 18060 / (T/K)
SMI.c,f (T/K)liquid, 1083..1628 °C: log (P/Pa) = 10.845 - 16580 / (T/K)
152916841875
30 Zn zinc
use (T/K)610670750852990(1185)
CRC.b (T/°C)337 (s)397 (s)477579717912 (e)
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 11.108 - 6776 / (T/K)
610.0670.4
CR2 (T/K)liquid, m.p. to 750 K: log (P/Pa) = 10.384 - 6286 / (T/K)
749.8
KAL (T/K)780854891945991104011201185
SMI.a (T/K)solid, 211..405 °C: log (P/Pa) = 11.065 - 6744 / (T/K)
609670
31 Ga gallium
use (T/K)131014481620183821252518
CRC.b (T/°C)103711751347156518522245
CR2solid, 298 K to m.p.: log (P/Pa) = 11.663 - 14208 / (T/K)
CR2 (T/K)liquid, m.p. to 1600 K: log (P/Pa) = 11.760 - 13984 / (T/K) - 0.3413 log (T/K)
1307.41444.41613.8
KAL (T/K)16651820190020002100220023502480
SMI.c (T/K)liquid, 771..1443 °C: log (P/Pa) = 9.915 - 13360 / (T/K)
134714991688
32 Ge germanium
use (T/K)164418142023228726333104
CRC.b (T/°C)137115411750201423602831
SMI.c (T/K)897..1635 °C: log (P/Pa) = 10.065 - 15150 / (T/K)
150516711878
33 As arsenic
use (T/K)553596646706781874
CRC.c (T/°C)280 (s)323 (s)373 (s)433 (s)508 (s)601 (s)
KAL (T/K)656 (s)701 (s)723 (s)754 (s)780 (s)808 (s)849 (s)883 (s)
34 Se selenium
use (T/K)500552617704813958
CRC.c (T/°C)227279344431540685
KAL (T/K)636695724767803844904958
35 Br bromine
use (T/K)185201220244276332
CRC.a (T/°C)-87.7 (s)-71.8 (s)-52.7 (s)-29.3 (s)2.558.4
KAL (T/K)227 (s)244.1 (s)252.1 (s)263.6 (s)275.7290.0312.0332.0
36 Kr krypton
use (T/K)5965748499120
CRC.d (T/°C)-214.0 (s)-208.0 (s)-199.4 (s)-188.9 (s)-174.6 (s)-153.6
KAL (T/K)77 (s)84.3 (s)88.1 (s)93.8 (s)98.6 (s)103.9 (s)112.0 (s)119.7
37 Rb rubidium
use (T/K)434486552641769958
CRC.f,k (T/°C)160.4212.5278.9368496.1685.3
CR2solid, 298 K to m.p.: log (P/Pa) = 9.863 - 4215 / (T/K)
CR2 (T/K)liquid, m.p. to 550 K: log (P/Pa) = 9.318 - 4040 / (T/K)
433.6485.7552.1
KAL (T/K)583649684735779829907978
SMI.d (T/K)liquid, 59.4..283 °C: log (P/Pa) = 9.545 - 4132 / (T/K)
433484548
38 Sr strontium
use (T/K)796882990113913451646
CRC.b (T/°C)523 (s)609 (s)717 (s)86610721373
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.232 - 8572 / (T/K) - 1.1926 log (T/K)
795.7882.0989.91028.0
KAL (T/K)1040 (s)1150120512851355143015501660
SMI.c (T/K)solid, 361..750 °C: log (P/Pa) = 10.255 - 8324 / (T/K)
8128991008
39 Y yttrium
use (T/K)18832075(2320)(2627)(3036)(3607)
CRC.c (T/°C)1610.11802.32047 (i)2354 (i)2763 (i)3334 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 14.741 - 22306 / (T/K) - 0.8705 log (T/K)
CR2 (T/K)liquid, m.p. to 2300 K: log (P/Pa) = 10.801 - 20341 / (T/K)
1883.32075.4
SMI.c (T/K)1249..2056 °C: log (P/Pa) = 11.555 - 21970 / (T/K)
190120812299
40 Zr zirconium
use (T/K)263928913197357540534678
CRC.b (T/°C)236626182924330237804405
CR2solid, 298 K to m.p.: log (P/Pa) = 15.014 - 31512 / (T/K) - 0.7890 log (T/K)
CR2liquid, m.p. to 2500 K: log (P/Pa) = 11.812 - 30295 / (T/K)
SMI.c (T/K)solid, 1527..2127 °C: log (P/Pa) = 11.505 - 25870 / (T/K)
2249
SMI.c (T/K)liquid, 2127..2459 °C: log (P/Pa) = 12.165 - 27430 / (T/K)
24572698
41 Nb niobium
use (T/K)294232073524391043935013
CRC.b (T/°C)266929343251363741204740
CR2solid, 298 K to 2500 K: log (P/Pa) = 13.828 - 37818 / (T/K) - 0.2575 log (T/K)
SMI.n2194..2539 °C: log (P/Pa) = 13.495 - 40400 / (T/K)
42 Mo molybdenum
use (T/K)274229943312370742124879
CRC.b (T/°C)2469 (s)27213039343439394606
CR2solid, 298 K to 2500 K: log (P/Pa) = 16.535 - 34626 / (T/K) - 1.1331 log (T/K)
KAL (T/K)34203720386040604220441046804900
SMI.r (T/K)solid, 1923..2533 °C: log (P/Pa) = 10.925 - 30310 / (T/K)
2774
43 Tc technetium
use (T/K)(2727)(2998)(3324)(3726)(4234)(4894)
CRC.b (T/°C)2454 (e)2725 (e)3051 (e)3453 (e)3961 (e)4621 (e)
44 Ru ruthenium
use (T/K)258828113087342438454388
CRC.b (T/°C)2315 (s)25382814315135724115
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.761 - 34154 / (T/K) - 0.4723 log (T/K)
2597.6
SMI.c (T/K)1913..2946 °C: log (P/Pa) = 12.625 - 33800 / (T/K)
267729083181
45 Rh rhodium
use (T/K)228824962749306334053997
CRC.b (T/°C)201522232476279031323724
CR2solid, 298 K to m.p.: log (P/Pa) = 15.174 - 29010 / (T/K) - 0.7068 log (T/K)
CR2 (T/K)liquid, m.p. to 2500 K: log (P/Pa) = 11.808 - 26792 / (T/K)
2269.02478.9
SMI.c (T/K)1681..2607 °C: log (P/Pa) = 12.675 - 30400 / (T/K)
239826042848
46 Pd palladium
use (T/K)172118972117239527533234
CRC.b (T/°C)1448 (s)16241844212224802961
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.508 - 19813 / (T/K) - 0.9258 log (T/K)
1721.0
CR2 (T/K)liquid, m.p. to 2100 K: log (P/Pa) = 10.432 - 17899 / (T/K)
1897.7
SMI.c (T/K)1156..2000 °C: log (P/Pa) = 10.585 - 19230 / (T/K)
181720062240
47 Ag silver
use (T/K)128314131575178220552433
CRC.b (T/°C)101011401302150917822160
CR2solid, 298 K to m.p.: log (P/Pa) = 14.133 - 14999 / (T/K) - 0.7845 log (T/K)
CR2 (T/K)liquid, m.p. to 1600 K: log (P/Pa) = 10.758 - 13827 / (T/K)
1285.31417.01578.8
KAL (T/K)16401790186519702060216023102440
SMI.asolid, 767..961 °C: log (P/Pa) = 11.405 - 14850 / (T/K)
SMI.a (T/K)liquid, 961..1353 °C: log (P/Pa) = 10.785 - 14090 / (T/K)
130614401604
48 Cd cadmium
use (T/K)5305836547458671040
CRC.b (T/°C)257 (s)310 (s)381472594767
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 10.945 - 5799 / (T/K)
529.8583.1
CR2 (T/K)liquid, m.p. to 650 K: log (P/Pa) = 10.248 - 5392 / (T/K)
653.7
KAL (T/K)6837487818298709159831045
SMI.a (T/K)solid, 148..321 °C: log (P/Pa) = 10.905 - 5798 / (T/K)
532585
49 In indium
use (T/K)119613251485169019622340
CRC.b (T/°C)92310521212141716892067
CR2solid, 298 K to m.p.: log (P/Pa) = 10.997 - 12548 / (T/K)
CR2 (T/K)liquid, m.p. to 1500 K: log (P/Pa) = 10.380 - 12276 / (T/K)
1182.71308.71464.9
SMI.c,m (T/K)liquid, 667..1260 °C: log (P/Pa) = 10.055 - 12150 / (T/K)
120813421508
50 Sn tin
use (T/K)149716571855210724382893
CRC.b (T/°C)122413841582183421652620
CR2solid, 298 K to m.p.: log (P/Pa) = 11.042 - 15710 / (T/K)
CR2 (T/K)liquid, m.p. to 1850 K: log (P/Pa) = 10.268 - 15332 / (T/K)
1493.21654.31854.4
KAL (T/K)19302120221023502470260028002990
SMI.c (T/K)liquid, 823..1609 °C: log (P/Pa) = 9.095 - 13110 / (T/K)
144116201848
51 Sb antimony
use (T/K)8078761011121914911858
CRC.b,c (T/°C)534 (s)603 (s)73894612181585
KAL (T/K)10651220129514051495159517401890
SMI.c (T/K)466..904 °C: log (P/Pa) = 10.545 - 9913 / (T/K)
94010391160
52 Te tellurium
use (T/K)(775)(888)10421266
CRC.d (T/°C)502 (e)615 (e)768.8992.4
KAL (T/K)8068889299901040110011901270
53 I iodine (rhombic)
use (T/K)260282309342381457
CRC.a,b (T/°C)-12.8 (s)9.3 (s)35.9 (s)68.7 (s)108 (s)184.0
KAL (T/K)318 (s)341.8 (s)353.1 (s)369.3 (s)382.7 (s)400.8430.6457.5
54 Xe xenon
use (T/K)8392103117137165
CRC.d,m (T/°C)-190 (s)-181 (s)-170 (s)-155.8 (s)-136.6 (s)-108.4
KAL (T/K)107 (s)117.3 (s)122.5 (s)130.1 (s)136.6 (s)143.8 (s)154.7 (s)165.0
55 Cs caesium
use (T/K)418469534623750940
CRC.f,k (T/°C)144.5195.6260.9350.0477.1667.0
CR2solid, 298 K to m.p.: log (P/Pa) = 9.717 - 3999 / (T/K)
CR2 (T/K)liquid, m.p. to 550 K: log (P/Pa) = 9.171 - 3830 / (T/K)
417.6468.7534.1
KAL (T/K)559624657708752802883959
SMI.e (T/K)liquid, 45..277 °C: log (P/Pa) = 8.985 - 3774 / (T/K)
420473540
56 Ba barium
use (T/K)91110381185138816862170
CRC.e (T/°C)638 (s)765912111514131897
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 17.411 - 9690 / (T/K) - 2.2890 log (T/K)
911.0
CR2 (T/K)liquid, m.p. to 1200 K: log (P/Pa) = 9.013 - 8163 / (T/K)
1018.71164.0
KAL (T/K)11651290136014551540163517801910
SMI.c (T/K)418..858 °C: log (P/Pa) = 10.005 - 8908 / (T/K)
8909891113
57 La lanthanum
use (T/K)(2005)(2208)(2458)(2772)(3178)(3726)
CRC.c (T/°C)1732 (i)1935 (i)2185 (i)2499 (i)2905 (i)3453 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 12.469 - 22551 / (T/K) - 0.3142 log (T/K)
CR2 (T/K)liquid, m.p. to 2450 K: log (P/Pa) = 10.917 - 21855 / (T/K)
2001.92203.82450.9
SMI.c (T/K)liquid, 1023..1754 °C: log (P/Pa) = 11.005 - 18000 / (T/K)
163617991999
58 Ce cerium
use (T/K)199221942442275431593705
CRC.g (T/°C)171919212169248128863432
CR2solid, 298 K to m.p.: log (P/Pa) = 11.145 - 21752 / (T/K)
CR2 (T/K)liquid, m.p. to 2450 K: log (P/Pa) = 10.617 - 21200 / (T/K)
1996.82204.42460.3
SMI.c (T/K)liquid, 1004..1599 °C: log (P/Pa) = 12.865 - 20100 / (T/K)
156216941850
59 Pr praseodymium
use (T/K)17711973(2227)(2571)(3054)(3779)
CRC.c (T/°C)1497.71699.41954 (i)2298 (i)2781 (i)3506 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 13.865 - 18720 / (T/K) - 0.9512 log (T/K)
CR2 (T/K)liquid, m.p. to 2200 K: log (P/Pa) = 9.778 - 17315 / (T/K)
1770.81972.5
60 Nd neodymium
use (T/K)159517741998(2296)(2715)(3336)
CRC.c (T/°C)1322.31501.21725.32023 (i)2442 (i)3063 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 14.002 - 17264 / (T/K) - 0.9519 log (T/K)
CR2 (T/K)liquid, m.p. to 2000 K: log (P/Pa) = 9.918 - 15824 / (T/K)
1595.51774.41998.5
62 Sm samarium
use (T/K)100111061240(1421)(1675)(2061)
CRC.c (T/°C)728 (s)833 (s)967 (s)1148 (i)1402 (i)1788 (i)
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.994 - 11034 / (T/K) - 1.3287 log (T/K)
1002.51109.21242.21289.0
63 Eu europium
use (T/K)8639571072123414521796
CRC.g (T/°C)590 (s)684 (s)799 (s)96111791523
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.246 - 9459 / (T/K) - 1.1661 log (T/K)
874.6968.81086.5
64 Gd gadolinium
use (T/K)(1836)(2028)(2267)(2573)(2976)(3535)
CRC.c (T/°C)1563 (i)1755 (i)1994 (i)2300 (i)2703 (i)3262 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 13.350 - 20861 / (T/K) - 0.5775 log (T/K)
CR2 (T/K)liquid, m.p. to 2250 K: log (P/Pa) = 10.563 - 19389 / (T/K)
1835.62027.52264.3
65 Tb terbium
use (T/K)17891979(2201)(2505)(2913)(3491)
CRC.c (T/°C)1516.11706.11928 (i)2232 (i)2640 (i)3218 (i)
CR2solid, 298 K to m.p.: log (P/Pa) = 14.516 - 20457 / (T/K) - 0.9247 log (T/K)
CR2 (T/K)liquid, m.p. to 2200 K: log (P/Pa) = 10.417 - 18639 / (T/K)
1789.31979.32214.4
66 Dy dysprosium
use (T/K)13781523(1704)(1954)(2304)(2831)
CRC.c (T/°C)1105 (s)1250 (s)1431 (i)1681 (i)2031 (i)2558 (i)
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.585 - 15336 / (T/K) - 1.1114 log (T/K)
1382.31526.5
67 Ho holmium
use (T/K)14321584(1775)(2040)(2410)(2964)
CRC.c (T/°C)1159 (s)1311 (s)1502 (i)1767 (i)2137 (i)2691 (i)
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.791 - 15899 / (T/K) - 1.1753 log (T/K)
1434.81585.2
68 Er erbium
use (T/K)15041663(1885)(2163)(2552)(3132)
CRC.c (T/°C)1231 (s)1390 (s)1612 (i)1890 (i)2279 (i)2859 (i)
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 14.922 - 16642 / (T/K) - 1.2154 log (T/K)
1504.71663.0
CR2 (T/K)liquid, m.p. to 1900 K: log (P/Pa) = 9.674 - 14380 / (T/K)
1873.9
69 Tm thulium
use (T/K)1117123513811570(1821)(2217)
CRC.c (T/°C)844 (s)962 (s)1108 (s)1297 (s)1548 (i)1944 (i)
CR2 (T/K)solid, 298 K to 1400 K: log (P/Pa) = 13.888 - 12270 / (T/K) - 0.9564 log (T/K)
1118.31235.51381.0
70 Yb ytterbium
use (T/K)7368139101047(1266)(1465)
CRC.c (T/°C)463 (s)540 (s)637 (s)774 (s)993 (i)1192 (i)
CR2 (T/K)solid, 298 K to 900 K: log (P/Pa) = 14.117 - 8111 / (T/K) - 1.0849 log (T/K)
737.0814.4
71 Lu lutetium
use (T/K)190621032346(2653)(3072)(3663)
CRC.c (T/°C)1633 (s)1829.82072.82380 (i)2799 (i)3390 (i)
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 13.799 - 22423 / (T/K) - 0.6200 log (T/K)
1905.9
CR2 (T/K)liquid, m.p. to 2350 K: log (P/Pa) = 10.654 - 20302 / (T/K)
2103.02346.0
72 Hf hafnium
use (T/K)268929543277367941944876
CRC.e (T/°C)241626813004340639214603
CR2solid, 298 K to m.p.: log (P/Pa) = 14.451 - 32482 / (T/K) - 0.6735 log (T/K)
73 Ta tantalum
use (T/K)329735973957439549395634
CRC.b (T/°C)302433243684412246665361
CR2solid, 248 K to 2500 K: log (P/Pa) = 21.813 - 41346 / (T/K) - 3.2152 log (T/K) + 0.7437 (T/K) 10−3
SMI.o,psolid, 2407..2820 °C: log (P/Pa) = 12.125 - 40210 / (T/K)
74 W tungsten
use (T/K)347737734137457951275823
CRC.b (T/°C)3204 (s)35003864430648545550
CR2solid, 298 K to 2350 K: log (P/Pa) = 7.951 - 44094 / (T/K) + 1.3677 log (T/K)
CR2solid, 2200 K to 2500 K: log (P/Pa) = -49.521 - 57687 / (T/K) - 12.2231 log (T/K)
KAL (T/K)43004630479050205200540056905940
SMI.s (T/K)solid, 2554..3309 °C: log (P/Pa) = 11.365 - 40260 / (T/K)
3542
75 Re rhenium
use (T/K)330336144009450051275954
CRC.b (T/°C)3030 (s)33413736422748545681
CR2solid, 298 K to 2500 K: log (P/Pa) = 16.549 - 40726 / (T/K) - 1.1629 log (T/K)
76 Os osmium
use (T/K)316034233751414846385256
CRC.b (T/°C)2887 (s)31503478387543654983
CR2solid, 298 K to 2500 K: log (P/Pa) = 14.425 - 41198 / (T/K) - 0.3896 log (T/K)
SMI.c (T/K)2101..3221 °C: log (P/Pa) = 12.715 - 37000 / (T/K)
291031583453
77 Ir iridium
use (T/K)271329573252361440694659
CRC.b (T/°C)2440 (s)26842979334137964386
CR2solid, 298 K to 2500 K: log (P/Pa) = 15.512 - 35099 / (T/K) - 0.7500 log (T/K)
SMI.c (T/K)1993..3118 °C: log (P/Pa) = 12.185 - 34110 / (T/K)
279930503349
78 Pt platinum
use (T/K)2330(2550)2815314335564094
CRC.b (T/°C)20572277 (e)2542287032833821
CR2solid, 298 K to m.p.: log (P/Pa) = 4.888 - 29387 / (T/K) + 1.1039 log (T/K) - 0.4527 (T/K) 10−3
CR2 (T/K)liquid, m.p. to 2500 K: log (P/Pa) = 11.392 - 26856 / (T/K)
2357.4
KAL (T/K)29103150326034203560370039104090
SMI.c (T/K)1606..2582 °C: log (P/Pa) = 11.758 - 27500 / (T/K)
233925562818
79 Au gold
use (T/K)164618142021228126203078
CRC.b (T/°C)137315411748200823472805
CR2solid, 298 K to m.p.: log (P/Pa) = 14.158 - 19343 / (T/K) - 0.7479 log (T/K)
CR2 (T/K)liquid, m.p. to 2050 K: log (P/Pa) = 10.838 - 18024 / (T/K)
1663.01832.12039.4
KAL (T/K)21002290239025202640277029603120
SMI.a (T/K)1083..1867 °C: log (P/Pa) = 10.775 - 18520 / (T/K)
171918952111
80 Hg mercury
use (T/K)315350393449523629
CRC.j,k (T/°C)42.076.6120.0175.6250.3355.9
CR2 (T/K)liquid, 298 K to 400 K: log (P/Pa) = 10.122 - 3190 / (T/K)
315.2349.7392.8
KAL (T/K)408448.8468.8498.4523.4551.2592.9629.8
81 Tl thallium
use (T/K)8829771097125214611758
CRC.b (T/°C)60970482497911881485
CR2solid, 298 K to m.p.: log (P/Pa) = 10.977 - 9447 / (T/K)
CR2 (T/K)liquid, m.p. to 1100 K: log (P/Pa) = 10.265 - 9037 / (T/K)
880.4975.41093.4
KAL (T/K)11251235129013701440151516301730
SMI.a (T/K)liquid, 405..821 °C: log (P/Pa) = 10.275 - 8920 / (T/K)
8689621078
82 Pb lead
use (T/K)97810881229141216602027
CRC.b (T/°C)705815956113913871754
CR2solid, 298 K to m.p.: log (P/Pa) = 10.649 - 10143 / (T/K)
CR2 (T/K)liquid, m.p. to 1200 K: log (P/Pa) = 9.917 - 9701 / (T/K)
978.21087.9
KAL (T/K)12851420148515851670176019052030
SMI.a (T/K)liquid, 483..975 °C: log (P/Pa) = 9.815 - 9600 / (T/K)
97810891228
83 Bi bismuth
use (T/K)94110411165132515381835
CRC.b (T/°C)668768892105212651562
KAL (T/K)12251350141015051580167018001920
SMI.c (T/K)liquid, 474..934 °C: log (P/Pa) = 10.265 - 9824 / (T/K)
95710601189
84 Po polonium
use (T/K)(846)10031236
CRC.d (T/°C)573 (e)730.2963.3
85 At astatine
use (T/K)361392429475531607
CRC.b (T/°C)88 (s)119 (s)156 (s)202 (s)258 (s)334
86 Rn radon
use (T/K)110121134152176211
CRC.d (T/°C)-163 (s)-152 (s)-139 (s)-121.4 (s)-97.6 (s)-62.3
KAL (T/K)139 (s)152 (s)158 (s)168 (s)176 (s)184 (s)198 (s)211
87 Fr francium
use (T/K)(404)(454)(519)(608)(738)(946)
CRC.b (T/°C)131 (e)181 (e)246 (e)335 (e)465 (e)673 (e)
88 Ra radium
use (T/K)8199061037120914461799
CRC.b (T/°C)546 (s)633 (s)76493611731526
90 Th thorium
use (T/K)263329073248368342595055
CRC.b (T/°C)236026342975341039864782
CR2solid, 298 K to m.p.: log (P/Pa) = 13.674 - 31483 / (T/K) - 0.5288 log (T/K)
CR2liquid, m.p. to 2500 K: log (P/Pa) = -13.447 - 24569 / (T/K) + 6.6473 log (T/K)
SMI.c (T/K)1686..2715 °C: log (P/Pa) = 11.645 - 28440 / (T/K)
244226722949
91 Pa protactinium
CR2solid, 298 K to m.p.: log (P/Pa) = 15.558 - 34869 / (T/K) - 1.0075 log (T/K)
CR2liquid, m.p. to 2500 K: log (P/Pa) = 11.183 - 32874 / (T/K)
92 U uranium
use (T/K)232525642859323437274402
CRC.b (T/°C)205222912586296134544129
CR2solid, 298 K to m.p.: log (P/Pa) = 5.776 - 27729 / (T/K) + 2.6982 log (T/K) - 1.5471 (T/K) 10−3
CR2 (T/K)liquid, m.p. to 2500 K: log (P/Pa) = 25.741 - 28776 / (T/K) - 4.0962 log (T/K)
2422.6
SMI.c (T/K)liquid, 1461..2338 °C: log (P/Pa) = 12.005 - 25800 / (T/K)
214923442579
93 Np neptunium
use (T/K)21942437
CR2solid, 298 K to m.p.: log (P/Pa) = 24.649 - 24886 / (T/K) - 3.9991 log (T/K)
CR2 (T/K)liquid, m.p. to 2500 K: log (P/Pa) = 15.082 - 23378 / (T/K) - 1.3250 log (T/K)
2194.12436.6
94 Pu plutonium
use (T/K)175619532198251129263499
CRC.b (T/°C)148316801925223826533226
CR2solid, 500 K to m.p.: log (P/Pa) = 23.864 - 18460 / (T/K) - 4.4720 log (T/K)
CR2solid, 298 K to 600 K: log (P/Pa) = 31.166 - 19162 / (T/K) - 6.6675 log (T/K)
CR2 (T/K)liquid, m.p. to 2450 K: log (P/Pa) = 8.672 - 16658 / (T/K)
1920.92171.3
95 Am americium
use (T/K)12391356
CR2 (T/K)solid, 298 K to m.p.: log (P/Pa) = 16.317 - 15059 / (T/K) - 1.3449 log (T/K)
1238.71356.1
96 Cm curium
use (T/K)17881982
CR2solid, 298 K to m.p.: log (P/Pa) = 13.375 - 20364 / (T/K) - 0.5770 log (T/K)
CR2 (T/K)liquid, m.p. to 2200 K: log (P/Pa) = 10.229 - 18292 / (T/K)
1788.21982.0

Notes

Related Research Articles

<span class="mw-page-title-main">Timeline of thermodynamics</span>

A timeline of events in the history of thermodynamics.

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

<span class="mw-page-title-main">Jayme Tiomno</span> Brazilian physicist

Jayme Tiomno was a Brazilian experimental and theoretical physicist with interests in particle physics and general relativity. He was member of the Brazilian Academy of Sciences and a recipient of the Brazilian Order of Scientific Merit. He was the son of Jewish Russian immigrants.

<span class="mw-page-title-main">Gleb Wataghin</span> Ukrainian-Italian theoretical and experimental physicist

Gleb Vassielievich Wataghin was a Ukrainian-Italian theoretical and experimental physicist and a great scientific leader who gave a great impulse to the teaching and research on physics in two continents: in the University of São Paulo, São Paulo, Brazil; and in the University of Turin, Turin, Italy.

<span class="mw-page-title-main">History of superconductivity</span>

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

This page provides supplementary chemical data on carbon dioxide.

For classical dynamics at relativistic speeds, see relativistic mechanics.

<span class="mw-page-title-main">Marvin L. Cohen</span> American physicist

Marvin Lou Cohen is an American–Canadian theoretical physicist. He is a physics professor at the University of California, Berkeley. Cohen is a leading expert in the field of condensed matter physics. He is widely known for his seminal work on the electronic structure of solids.

<span class="mw-page-title-main">Random phase approximation</span>

The random phase approximation (RPA) is an approximation method in condensed matter physics and in nuclear physics. It was first introduced by David Bohm and David Pines as an important result in a series of seminal papers of 1952 and 1953. For decades physicists had been trying to incorporate the effect of microscopic quantum mechanical interactions between electrons in the theory of matter. Bohm and Pines' RPA accounts for the weak screened Coulomb interaction and is commonly used for describing the dynamic linear electronic response of electron systems.

<span class="mw-page-title-main">Volker Heine</span> New Zealand scientist

Volker Heine FRS is a New Zealand / British physicist. He is married to Daphne and they have three children. Volker Heine is considered a pioneer of theoretical and computational studies of the electronic structure of solids and liquids and the determination of physical properties derived from it.

In mathematics, the folded spectrum method (FSM) is an iterative method for solving large eigenvalue problems. Here you always find a vector with an eigenvalue close to a search-value . This means you can get a vector in the middle of the spectrum without solving the matrix.

Thermoelastic damping is a source of intrinsic material damping due to thermoelasticity present in almost all materials. As the name thermoelastic suggests, it describes the coupling between the elastic field in the structure caused by deformation and the temperature field.

<span class="mw-page-title-main">Bruria Kaufman</span> American theoretical physicist (1918–2010)

Bruria Kaufman was an American theoretical physicist. She contributed to Albert Einstein's general theory of relativity, to statistical physics, where she used applied spinor analysis to rederive the result of Lars Onsager on the partition function of the two-dimensional Ising model, and to the study of the Mössbauer effect, on which she collaborated with John von Neumann and Harry Lipkin.

In physics, The Keating Model is a model that theoretical physicist Patrick N. Keating introduced in 1966 to describe forces induced on neighboring atoms when one atom moves in a solid.

Francis Goddard Slack was an American physicist. He was a physics teacher, researcher, and administrator in academia who was renowned for placing equal emphasis on teaching and on research.

G. Norris Glasoe was an American nuclear physicist. He was a member of the Columbia University team which was the first in the United States to verify the European discovery of the nuclear fission of uranium via neutron bombardment. During World War II, he worked at the MIT Radiation Laboratory. He was a physicist and administrator at the Brookhaven National Laboratory.

In materials science, the threshold displacement energy is the minimum kinetic energy that an atom in a solid needs to be permanently displaced from its site in the lattice to a defect position. It is also known as "displacement threshold energy" or just "displacement energy". In a crystal, a separate threshold displacement energy exists for each crystallographic direction. Then one should distinguish between the minimum and average over all lattice directions' threshold displacement energies. In amorphous solids, it may be possible to define an effective displacement energy to describe some other average quantity of interest. Threshold displacement energies in typical solids are of the order of 10-50 eV.

Lattice density functional theory (LDFT) is a statistical theory used in physics and thermodynamics to model a variety of physical phenomena with simple lattice equations.

Wilson Marcy Powell was an American physicist and a member of the physics department at the University of California, Berkeley.

In condensed matter physics, the Slater–Pauling rule states that adding a element to a metal alloy will be reduce the alloy's saturation magnetization by an amount proportional to the number of valence electrons outside of the added element's d shell. Conversely, elements with a partially filled d shell will increase the magnetic moment by an amount proportional to number of missing electrons. Investigated by the physicists John C. Slater and Linus Pauling in the 1930s, the rule is a useful approximation for the magnetic properties of many transition metals.

References

CRC.a-m

David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Vapor Pressure

Contents

Uncertainties of several degrees should generally be assumed. (e) Indicates extrapolated values beyond the region of experimental data, subject to greater uncertainty. (i) Indicates values calculated from ideal gas thermodynamic functions. (s) Indicates the substance is solid at this temperature. As quoted from these sources:
  • a - Lide, D.R., and Kehiaian, H.V., CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, Florida, 1994.
  • b - Stull, D., in American Institute of Physics Handbook, Third Edition, Gray, D.E., Ed., McGraw Hill, New York, 1972.
  • c - Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K., and Wagman, D.D., Selected Values of Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, OH, 1973.
  • d - TRCVP, Vapor Pressure Database, Version 2.2P, Thermodynamic Research Center, Texas A&M University, College Station, TX.
  • e - Barin, I., Thermochemical Data of Pure Substances, VCH Publishers, New York, 1993.
  • f - Ohse, R.W. Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific Publications, Oxford, 1994.
  • g - Gschneidner, K.A., in CRC Handbook of Chemistry and Physics, 77th Edition, p. 4-112, CRC Press, Boca Raton, Florida, 1996.
  • h - Leider, H.R; Krikorian, O.H; Young, D.A (1973). "Thermodynamic properties of carbon up to the critical point". Carbon. Elsevier BV. 11 (5): 555–563. doi:10.1016/0008-6223(73)90316-3. ISSN   0008-6223..
  • i - Wagner, W., and de Reuck, K.M., International Thermodynamic Tables of the Fluid State, No. 9. Oxygen, Blackwell Scientific Publications, Oxford, 1987.
  • j - Marsh, K.N., Editor, Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Scientific Publications, Oxford, 1987.
  • k - Alcock, C. B.; Itkin, V. P.; Horrigan, M. K. (1984). "Vapour Pressure Equations for the Metallic Elements: 298–2500K". Canadian Metallurgical Quarterly. Informa UK Limited. 23 (3): 309–313. Bibcode:1984CaMQ...23..309A. doi:10.1179/cmq.1984.23.3.309. ISSN   0008-4433.
  • l - Stewart, Richard B.; Jacobsen, Richard T. (1989). "Thermodynamic Properties of Argon from the Triple Point to 1200 K with Pressures to 1000 MPa". Journal of Physical and Chemical Reference Data. AIP Publishing. 18 (2): 639–798. Bibcode:1989JPCRD..18..639S. doi:10.1063/1.555829. ISSN   0047-2689.
  • m - S̆ifner, O.; Klomfar, J. (1994). "Thermodynamic Properties of Xenon from the Triple Point to 800 K with Pressures up to 350 MPa". Journal of Physical and Chemical Reference Data. AIP Publishing. 23 (1): 63–152. Bibcode:1994JPCRD..23...63S. doi:10.1063/1.555956. ISSN   0047-2689.

CR2

David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition, online version. CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Vapor Pressure of the Metallic Elements

The equations reproduce the observed pressures to an accuracy of ±5% or better. Coefficients from this source:

KAL

National Physical Laboratory, Kaye and Laby Tables of Physical and Chemical Constants ; Section 3.4.4, D. Ambrose, Vapour pressures from 0.2 to 101.325 kPa. Retrieved Jan 2006.

SMI.a-s

W.E. Forsythe (ed.), Smithsonian Physical Tables 9th ed., online version (1954; Knovel 2003). Table 363, Evaporation of Metals

The equations are described as reproducing the observed pressures to a satisfactory degree of approximation. From these sources:
  • a - K.K. Kelley, Bur. Mines Bull. 383, (1935).
  • b - Ditchburn, R. W.; Gilmour, J. C. (1941-10-01). "The Vapor Pressures of Monatomic Vapors". Reviews of Modern Physics. American Physical Society (APS). 13 (4): 310–327. Bibcode:1941RvMP...13..310D. doi:10.1103/revmodphys.13.310. ISSN   0034-6861.
  • c - Brewer, The thermodynamic and physical properties of the elements, Report for the Manhattan Project, (1946).
  • d - Killian, Thomas J. (1926-05-01). "Thermionic Phenomena Caused by Vapors of Rubidium and Potassium". Physical Review. American Physical Society (APS). 27 (5): 578–587. Bibcode:1926PhRv...27..578K. doi:10.1103/physrev.27.578. ISSN   0031-899X.
  • e - Taylor, John Bradshaw; Langmuir, Irving (1937-05-01). "Vapor Pressure of Caesium by the Positive Ion Method". Physical Review. American Physical Society (APS). 51 (9): 753–760. Bibcode:1937PhRv...51..753T. doi:10.1103/physrev.51.753. ISSN   0031-899X.
  • f - Marshall, A.L.; Dornte, R.W.; Norton, F.J. (1937). "The Vapor Pressure of Copper and Iron". Journal of the American Chemical Society. 59 (7): 1161-1166. doi:10.1021/ja01286a001.
  • g - Schuman, Robert; Garrett, A. B. (1944). "The Vapor Pressure of Beryllium at 1170-1340K". Journal of the American Chemical Society. American Chemical Society (ACS). 66 (3): 442–444. doi:10.1021/ja01231a040. ISSN   0002-7863.;Schuman, Robert; Garrett, A (1945). "Correction. The Vapor Pressure of Beryllium at 1170-1340K". Journal of the American Chemical Society. American Chemical Society (ACS). 67 (12): 2279. doi:10.1021/ja01228a605. ISSN   0002-7863.
  • h - Rudberg, Erik (1934-11-01). "The Vapor Pressure of Calcium between 500 and 625°C". Physical Review. American Physical Society (APS). 46 (9): 763–767. Bibcode:1934PhRv...46..763R. doi:10.1103/physrev.46.763. ISSN   0031-899X.
  • i - van Liempt, J. A. M. (1936). "Die Dampfdrücke des Bariums". Recueil des Travaux Chimiques des Pays-Bas. Wiley. 55 (6): 468–470. doi:10.1002/recl.19360550604. ISSN   0165-0513..
  • j - Rudberg, Erik; Lempert, Joseph (1935). "The Vapor Pressure of Barium". The Journal of Chemical Physics. AIP Publishing. 3 (10): 627–631. Bibcode:1935JChPh...3..627R. doi:10.1063/1.1749565. ISSN   0021-9606.
  • k - Int. National Critical Tables, vol. 3, p. 306, (1928).
  • l - Baur, Emil; Brunner, Roland (1934). "Dampfdruckmessungen an hochsiedenden Metallen". Helvetica Chimica Acta (in German). Wiley. 17 (1): 958–969. doi:10.1002/hlca.193401701120. ISSN   0018-019X.
  • m - Anderson, J. S. (1943). "43. The vapour pressure of metallic indium". Journal of the Chemical Society (Resumed). Royal Society of Chemistry (RSC): 141. doi:10.1039/jr9430000141. ISSN   0368-1769.
  • n - Reimann, A.L.; Grant, C. Kerr (1936). "III.Some high-temperature properties of niobium". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Informa UK Limited. 22 (145): 34–48. doi:10.1080/14786443608561665. ISSN   1941-5982.
  • o - Langmuir, D. B.; Malter, L. (1939-04-15). "The Rate of Evaporation of Tantalum". Physical Review. American Physical Society (APS). 55 (8): 748–749. Bibcode:1939PhRv...55..748L. doi:10.1103/physrev.55.748. ISSN   0031-899X.
  • p - Fiske, Milan D. (1942-04-01). "The Temperature Scale, Thermionics, and Thermatomics of Tantalum". Physical Review. American Physical Society (APS). 61 (7–8): 513–519. Bibcode:1942PhRv...61..513F. doi:10.1103/physrev.61.513. ISSN   0031-899X.
  • q - Johnston, H. L.; Marshall, A. L. (1940). "Vapor Pressures of Nickel and of Nickel Oxide". Journal of the American Chemical Society. American Chemical Society (ACS). 62 (6): 1382–1390. doi:10.1021/ja01863a015. ISSN   0002-7863.
  • r - Jones, Howard A.; r, Irving Langmu; Mackay, G. M. J. (1927-08-01). "The Rates of Evaporation and the Vapor Pressures of Tungsten, Molybdenum, Platinum, Nickel, Iron, Copper and Silver". Physical Review. American Physical Society (APS). 30 (2): 201–214. Bibcode:1927PhRv...30..201J. doi:10.1103/physrev.30.201. ISSN   0031-899X.
  • s - H.A. Jones, I. Langmuir, Gen. Electric Rev., vol. 30, p. 354, (1927).

See also