Electrical resistivities of the elements (data page)

Last updated

Electrical resistivity

T80 K (−193 °C)273 K (0 °C)293 K (20 °C)298 K (25 °C)300 K (27 °C)500 K (227 °C)
3 Li lithium
use10.0 nΩm85.3 nΩm92.8 nΩm94.7 nΩm95.5 nΩm
CRC (10−8 Ωm)1.008.539.289.479.55
LNG (10−8 Ωm)9.28
WEL (10−8 Ωm)(293 K–298 K) 9.4
4 Be beryllium
use0.75 nΩm30.2 nΩm35.6 nΩm37.0 nΩm37.6 nΩm99 nΩm
CRC (10−8 Ωm)0.0753.023.563.703.769.9
LNG (10−8 Ωm)3.56
WEL (10−8 Ωm)(293 K–298 K) 4
5 B boron
use1.5×104 Ωm
LNG (10−8 Ωm)1.5×1012
WEL (10−8 Ωm)(293 K–298 K) > 1012
6 C carbon (diamond)
use
LNG (10−8 Ωm)0.8 [sic]
6 C carbon (graphite)
use
LNG (10−8 Ωm)1375
WEL (10−8 Ωm)(293 K–298 K) about 1000 – direction dependent
11 Na sodium
use8.0 nΩm43.3 nΩm47.7 nΩm48.8 nΩm49.3 nΩm
CRC (10−8 Ωm)0.804.334.774.884.93
LNG (10−8 Ωm)4.77
WEL (10−8 Ωm)(293 K–298 K) 4.7
12 Mg magnesium
use5.57 nΩm40.5 nΩm43.9 nΩm44.8 nΩm45.1 nΩm78.6 nΩm
CRC (10−8 Ωm)0.5574.054.394.484.517.86
LNG (10−8 Ωm)4.39
WEL (10−8 Ωm)(293 K–298 K) 4.4
13 Al aluminium
use2.45 nΩm24.17 nΩm26.50 nΩm27.09 nΩm27.33 nΩm49.9 nΩm
CRC (10−8 Ωm)0.2452.4172.6502.7092.7334.99
LNG (10−8 Ωm)2.6548
WEL (10−8 Ωm)(293 K–298 K) 2.65
14 Si silicon
use
LNG (10−8 Ωm)105
WEL (10−8 Ωm)(293 K–298 K) about 100000
15 P phosphorus
use
LNG (10−8 Ωm)(white) 10 [sic]
WEL (10−8 Ωm)(293 K–298 K) 10
16 S sulfur
use(amorphous) 2×1015 Ωm
LNG (10−8 Ωm)(amorphous) 2×1023
WEL (10−8 Ωm)(293 K–298 K) > 1023
17 Cl chlorine
use> 10 Ωm
LNG (10−8 Ωm)>109
WEL (10−8 Ωm)(293 K–298 K) > 1010
19 K potassium
use13.4 nΩm64.9 nΩm72.0 nΩm73.9 nΩm74.7 nΩm
CRC (10−8 Ωm)1.346.497.207.397.47
LNG (10−8 Ωm)7.2
WEL (10−8 Ωm)(293 K–298 K) 7
20 Ca calcium
use6.5 nΩm31.1 nΩm33.6 nΩm34.2 nΩm34.5 nΩm60. nΩm
CRC (10−8 Ωm)0.653.113.363.423.456.0
LNG (10−8 Ωm)3.36
WEL (10−8 Ωm)(293 K–298 K) 3.4
21 Sc scandium
use(room temperature) (alpha, polycrystalline) calculated 562 nΩm
CRC (10−8 Ωm)(290 K–300 K) 56.2
CR2 (10−8 Ωm)(room temperature) (alpha, amorphous) 70.9
CR2 (10−8 Ωm)(room temperature) (alpha, crystalline) 26.9
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) calculated from single crystal values 56.2
LNG (10−8 Ωm)56.2
WEL (10−8 Ωm)(293 K–298 K) 55
22 Ti titanium
use0.39 µΩm0.420 µΩm
CRC (10−8 Ωm)39
LNG (10−8 Ωm)42.0
WEL (10−8 Ωm)(293 K–298 K) 40
23 V vanadium
use24.1 nΩm181 nΩm197 nΩm201 nΩm202 nΩm348 nΩm
CRC (10−8 Ωm)2.4118.119.720.120.234.8
LNG (10−8 Ωm)19.7
WEL (10−8 Ωm)(293 K–298 K) 20
24 Cr chromium
use118 nΩm125 nΩm126 nΩm127 nΩm201 nΩm
CRC (10−8 Ωm)11.812.512.612.720.1
LNG (10−8 Ωm)12.5
WEL (10−8 Ωm)(293 K–298 K) 12.7
25 Mn manganese
use1.32 µΩm1.43 µΩm1.44 µΩm1.44 µΩm1.44 µΩm1.49 µΩm
CRC (10−8 Ωm)132143144144144149
LNG (10−8 Ωm)144
WEL (10−8 Ωm)(293 K–298 K) 160
26 Fe iron
use6.93 nΩm85.7 nΩm96.1 nΩm98.7 nΩm99.8 nΩm237 nΩm
CRC (10−8 Ωm)0.6938.579.619.879.9823.7
LNG (10−8 Ωm)9.61
WEL (10−8 Ωm)(293 K–298 K) 9.7
27 Co cobalt
use56 nΩm62.4 nΩm
CRC (10−8 Ωm)5.6
LNG (10−8 Ωm)6.24
WEL (10−8 Ωm)(293 K–298 K) 6
28 Ni nickel
use5.45 nΩm61.6 nΩm69.3 nΩm71.2 nΩm72.0 nΩm177 nΩm
CRC (10−8 Ωm)0.5456.166.937.127.2017.7
LNG (10−8 Ωm)6.93
WEL (10−8 Ωm)(293 K–298 K) 7
29 Cu copper
use2.15 nΩm15.43 nΩm16.78 nΩm17.12 nΩm17.25 nΩm30.90 nΩm
CRC (10−8 Ωm)0.2151.5431.6781.7121.7253.090
LNG (10−8 Ωm)1.678
WEL (10−8 Ωm)(293 K–298 K) 1.7
30 Zn zinc
use11.5 nΩm54.6 nΩm59.0 nΩm60.1 nΩm60.6 nΩm108.2 nΩm
CRC (10−8 Ωm)1.155.465.906.016.0610.82
LNG (10−8 Ωm)5.9
WEL (10−8 Ωm)(293 K–298 K) 5.9
31 Ga gallium
use
CRC (10−8 Ωm)13.6
LNG (10−8 Ωm)(30 °C) 25.795
WEL (10−8 Ωm)(293 K–298 K) 14
32 Ge germanium
use
LNG (10−8 Ωm)53000
WEL (10−8 Ωm)(293 K–298 K) about 50000
33 As arsenic
use333 nΩm
LNG (10−8 Ωm)33.3
WEL (10−8 Ωm)(293 K–298 K) 30
34 Se selenium
use
LNG (10−8 Ωm)(amorphous) 1.2 [sic]
WEL (10−8 Ωm)(293 K–298 K) high
35 Br bromine
use7.8×1010 Ωm
LNG (10−8 Ωm)7.8×1018
WEL (10−8 Ωm)(293 K–298 K) > 1018
37 Rb rubidium
use26.5 nΩm115 nΩm128 nΩm131 nΩm133 nΩm
CRC (10−8 Ωm)2.6511.512.813.113.3
LNG (10−8 Ωm)12.8
WEL (10−8 Ωm)(293 K–298 K) 12
38 Sr strontium
use36.4 nΩm123 nΩm132 nΩm134 nΩm135 nΩm222 nΩm
CRC (10−8 Ωm)3.6412.313.213.413.522.2
LNG (10−8 Ωm)13.2
WEL (10−8 Ωm)(293 K–298 K) 13
39 Y yttrium
use(room temperature) (alpha, polycrystalline) 596 nΩm
CRC (10−8 Ωm)(290 K–300 K) 59.6
CR2 (10−8 Ωm)(room temperature) (alpha, amorphous) 72.5
CR2 (10−8 Ωm)(room temperature) (alpha, crystalline) 35.5
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 59.6
LNG (10−8 Ωm)59.6
WEL (10−8 Ωm)(293 K–298 K) 56
40 Zr zirconium
use66.4 nΩm388 nΩm421 nΩm429 nΩm433 nΩm765 nΩm
CRC (10−8 Ωm)6.6438.842.142.943.376.5
LNG (10−8 Ωm)42.1
WEL (10−8 Ωm)(293 K–298 K) 42
41 Nb niobium
use152 nΩm
CRC (10−8 Ωm)15.2
LNG (10−8 Ωm)15.2
WEL (10−8 Ωm)(293 K–298 K) 15
42 Mo molybdenum
use4.82 nΩm48.5 nΩm53.4 nΩm54.7 nΩm55.2 nΩm106 nΩm
CRC (10−8 Ωm)0.4824.855.345.475.5210.6
LNG (10−8 Ωm)5.34
WEL (10−8 Ωm)(293 K–298 K) 5
43 Tc technetium
use
LNG (10−8 Ωm)(100 °C) 22.6
WEL (10−8 Ωm)(293 K–298 K) 20
44 Ru ruthenium
use71 nΩm
CRC (10−8 Ωm)7.1
LNG (10−8 Ωm)7.1
WEL (10−8 Ωm)(293 K–298 K) 7.1
45 Rh rhodium
use43.3 nΩm
CRC (10−8 Ωm)4.3
LNG (10−8 Ωm)4.33
WEL (10−8 Ωm)(293 K–298 K) 4.3
46 Pd palladium
use17.5 nΩm97.8 nΩm105.4 nΩm107.3 nΩm108.0 nΩm179.4 nΩm
CRC (10−8 Ωm)1.759.7810.5410.7310.8017.94
LNG (10−8 Ωm)10.54
WEL (10−8 Ωm)(293 K–298 K) 10
47 Ag silver
use2.89 nΩm14.67 nΩm15.87 nΩm16.17 nΩm16.29 nΩm28.7 nΩm
CRC (10−8 Ωm)0.2891.4671.5871.6171.6292.87
LNG (10−8 Ωm)1.587
WEL (10−8 Ωm)(293 K–298 K) 1.6
48 Cd cadmium
use68 nΩm
use(22 °C) 72.7 nΩm
CRC (10−8 Ωm)6.8
LNG (10−8 Ωm)(22 °C) 7.27
WEL (10−8 Ωm)(293 K–298 K) 7
49 In indium
use0.080 µΩm83.7 nΩm
CRC (10−8 Ωm)8.0
LNG (10−8 Ωm)8.37
WEL (10−8 Ωm)(293 K–298 K) 8
50 Sn tin
use115 nΩm
CRC (10−8 Ωm)11.5
LNG (10−8 Ωm)11.5
WEL (10−8 Ωm)(293 K–298 K) 11
51 Sb antimony
use0.39 µΩm417 nΩm
CRC (10−8 Ωm)39
LNG (10−8 Ωm)41.7
WEL (10−8 Ωm)(293 K–298 K) 40
52 Te tellurium
use
LNG (10−8 Ωm)(5.8–33)×10³
WEL (10−8 Ωm)(293 K–298 K) about 10000
53 I iodine
use1.3×107 Ωm
LNG (10−8 Ωm)1.3×1015
WEL (10−8 Ωm)(293 K–298 K) > 1015
55 Cs caesium
use41.6 nΩm187 nΩm205 nΩm208 nΩm210 nΩm
CRC (10−8 Ωm)4.1618.720.520.821.0
LNG (10−8 Ωm)20.5
WEL (10−8 Ωm)(293 K–298 K) 20
56 Ba barium
use68.3 nΩm302 nΩm332 nΩm0.340 µΩm343 nΩm724 nΩm
CRC (10−8 Ωm)6.8330.233.234.034.372.4
LNG (10−8 Ωm)33.2
WEL (10−8 Ωm)(293 K–298 K) 35
57 La lanthanum
use(room temperature) (alpha, polycrystalline) 615 nΩm
CRC (10−8 Ωm)(290 K–300 K) 61.5
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 61.5
LNG (10−8 Ωm)61.5
WEL (10−8 Ωm)(293 K–298 K) 61
58 Ce cerium (beta, hex)
use(room temperature) (beta, polycrystalline) 828 nΩm
CRC (10−8 Ωm)(beta, hex) (290 K–300 K) 82.8
CR2 (10−8 Ωm)(room temperature) (beta, polycrystalline) 82.8
LNG (10−8 Ωm)(beta, hex) 82.8
58 Ce cerium (gamma, cubic)
use(room temperature) (gamma, polycrystalline) 744 nΩm
CRC (10−8 Ωm)74.4
CR2 (10−8 Ωm)(room temperature) (gamma, polycrystalline) 74.4
WEL (10−8 Ωm)(293 K–298 K) 74
59 Pr praseodymium
use(room temperature) (alpha, polycrystalline) 0.700 µΩm
CRC (10−8 Ωm)(290 K–300 K) 70.0
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 70.0
LNG (10−8 Ωm)70.0
WEL (10−8 Ωm)(293 K–298 K) 70
60 Nd neodymium
use(room temperature) (alpha, polycrystalline) 643 nΩm
CRC (10−8 Ωm)(290 K–300 K) 64.3
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 64.3
LNG (10−8 Ωm)64.3
WEL (10−8 Ωm)(293 K–298 K) 64
61 Pm promethium
use(room temperature) estimated 0.75 µΩm
CRC (10−8 Ωm)(290 K–300 K) 75 est.
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 75 estimated
LNG (10−8 Ωm)64.0
WEL (10−8 Ωm)(293 K–298 K) 75
62 Sm samarium
use(room temperature) (alpha, polycrystalline) 0.940 µΩm
CRC (10−8 Ωm)(290 K–300 K) 94.0
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 94.0
LNG (10−8 Ωm)94.0
WEL (10−8 Ωm)(293 K–298 K) 94
63 Eu europium
use(room temperature) (polycrystalline) 0.900 µΩm
CRC (10−8 Ωm)(290 K–300 K) 90.0
CR2 (10−8 Ωm)(room temperature) (polycrystalline) 90.0
LNG (10−8 Ωm)90.0
WEL (10−8 Ωm)(293 K–298 K) 90
64 Gd gadolinium
use(room temperature) (alpha, polycrystalline) 1.310 µΩm
CRC (10−8 Ωm)(290 K–300 K) 131
CR2 (10−8 Ωm)(room temperature) (alpha, amorphous) 135.1
CR2 (10−8 Ωm)(room temperature) (alpha, crystalline) 121.7
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 131.0
LNG (10−8 Ωm)131
WEL (10−8 Ωm)(293 K–298 K) 130
65 Tb terbium
use(room temperature) (alpha, polycrystalline) 1.150 µΩm
CRC (10−8 Ωm)(290 K–300 K) 115
CR2 (10−8 Ωm)(room temperature) (alpha, amorphous) 123.5
CR2 (10−8 Ωm)(room temperature) (alpha, crystalline) 101.5
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 115.0
LNG (10−8 Ωm)115
WEL (10−8 Ωm)(293 K–298 K) 120
66 Dy dysprosium
use(room temperature) (alpha, polycrystalline) 926 nΩm
CRC (10−8 Ωm)(290 K–300 K) 92.6
CR2 (10−8 Ωm)(room temperature) (alpha, amorphous) 111.0
CR2 (10−8 Ωm)(room temperature) (alpha, crystalline) 76.6
CR2 (10−8 Ωm)(room temperature) (alpha, polycrystalline) 92.6
LNG (10−8 Ωm)92.6
WEL (10−8 Ωm)(293 K–298 K) 91
67 Ho holmium
use(room temperature) (polycrystalline) 814 nΩm
CRC (10−8 Ωm)(290 K–300 K) 81.4
CR2 (10−8 Ωm)(room temperature) (amorphous) 101.5
CR2 (10−8 Ωm)(room temperature) (crystalline) 60.5
CR2 (10−8 Ωm)(room temperature) (polycrystalline) 81.4
LNG (10−8 Ωm)81.4
WEL (10−8 Ωm)(293 K–298 K) 94
68 Er erbium
use(room temperature) (polycrystalline) 0.860 µΩm
CRC (10−8 Ωm)(290 K–300 K) 86.0
CR2 (10−8 Ωm)(room temperature) (amorphous) 94.5
CR2 (10−8 Ωm)(room temperature) (crystalline) 60.3
CR2 (10−8 Ωm)(room temperature) (polycrystalline) 86.0
LNG (10−8 Ωm)86.0
WEL (10−8 Ωm)(293 K–298 K) 86
69 Tm thulium
use(room temperature) (polycrystalline) 676 nΩm
CRC (10−8 Ωm)(290 K–300 K) 67.6
CR2 (10−8 Ωm)(room temperature) (amorphous) 88.0
CR2 (10−8 Ωm)(room temperature) (crystalline) 47.2
CR2 (10−8 Ωm)(room temperature) (polycrystalline) 67.6
LNG (10−8 Ωm)67.6
WEL (10−8 Ωm)(293 K–298 K) 70
70 Yb ytterbium
use(room temperature) (beta, polycrystalline) 0.250 µΩm
CRC (10−8 Ωm)(290 K–300 K) 25.0
CR2 (10−8 Ωm)(room temperature) (beta, polycrystalline) 25.0
LNG (10−8 Ωm)25
WEL (10−8 Ωm)(293 K–298 K) 28
71 Lu lutetium
use(room temperature) (polycrystalline) 582 nΩm
CRC (10−8 Ωm)(290 K–300 K) 58.2
CR2 (10−8 Ωm)(room temperature) (amorphous) 76.6
CR2 (10−8 Ωm)(room temperature) (crystalline) 34.7
CR2 (10−8 Ωm)(room temperature) (polycrystalline) 58.2
LNG (10−8 Ωm)58.2
WEL (10−8 Ωm)(293 K–298 K) 56
72 Hf hafnium
use67.5 nΩm304 nΩm331 nΩm337 nΩm0.340 µΩm631 nΩm
CRC (10−8 Ωm)6.7530.433.133.734.063.1
LNG (10−8 Ωm)33.1
WEL (10−8 Ωm)(293 K–298 K) 30
73 Ta tantalum
use26.2 nΩm122 nΩm131 nΩm134 nΩm135 nΩm229 nΩm
CRC (10−8 Ωm)2.6212.213.113.413.522.9
LNG (10−8 Ωm)13.5
WEL (10−8 Ωm)(293 K–298 K) 13
74 W tungsten
use6.06 nΩm48.2 nΩm52.8 nΩm53.9 nΩm54.4 nΩm103 nΩm
CRC (10−8 Ωm)0.6064.825.285.395.4410.3
LNG (10−8 Ωm)5.28
WEL (10−8 Ωm)(293 K–298 K) 5
75 Re rhenium
use172 nΩm193 nΩm
CRC (10−8 Ωm)17.2
LNG (10−8 Ωm)19.3
WEL (10−8 Ωm)(293 K–298 K) 18
76 Os osmium
use81.2 nΩm
CRC (10−8 Ωm)8.1
LNG (10−8 Ωm)8.12
WEL (10−8 Ωm)(293 K–298 K) 8.1
77 Ir iridium
use47 nΩm47.1 nΩm
CRC (10−8 Ωm)4.7
LNG (10−8 Ωm)4.71
WEL (10−8 Ωm)(293 K–298 K) 4.7
78 Pt platinum
use19.22 nΩm96 nΩm105 nΩm107 nΩm108 nΩm183 nΩm
CRC (10−8 Ωm)1.9229.610.510.710.818.3
LNG (10−8 Ωm)10.6
WEL (10−8 Ωm)(293 K–298 K) 10.6
79 Au gold
use4.81 nΩm20.51 nΩm22.14 nΩm22.55 nΩm22.71 nΩm39.7 nΩm
CRC (10−8 Ωm)0.4812.0512.2142.2552.2713.97
LNG (10−8 Ωm)2.214
WEL (10−8 Ωm)(293 K–298 K) 2.2
80 Hg mercury
use961 nΩm
CRC (10−8 Ωm)96.1
LNG (10−8 Ωm)(solid) 21
LNG (10−8 Ωm)(liquid) 95.8
WEL (10−8 Ωm)(293 K–298 K) 96
81 Tl thallium
use0.15 µΩm0.18 µΩm
CRC (10−8 Ωm)15
LNG (10−8 Ωm)18
WEL (10−8 Ωm)(293 K–298 K) 15
82 Pb lead
use49 nΩm192 nΩm208 nΩm211 nΩm213 nΩm383 nΩm
CRC (10−8 Ωm)4.919.220.821.121.338.3
LNG (10−8 Ωm)20.8
WEL (10−8 Ωm)(293 K–298 K) 21
83 Bi bismuth
use1.07 µΩm1.29 µΩm
CRC (10−8 Ωm)107
LNG (10−8 Ωm)129
WEL (10−8 Ωm)(293 K–298 K) 130
84 Po polonium
use(alpha) 0.40 µΩm
CRC (10−8 Ωm)40
LNG (10−8 Ωm)(alpha) 40.0
WEL (10−8 Ωm)(293 K–298 K) 43
88 Ra radium
use1 µΩm
LNG (10−8 Ωm)100
WEL (10−8 Ωm)(293 K–298 K) 100
90 Th thorium
use147 nΩm
use(22 °C) 15.4
CRC (10−8 Ωm)14.7
LNG (10−8 Ωm)(22 °C) 15.4
WEL (10−8 Ωm)(293 K–298 K) 15
91 Pa protactinium
use177 nΩm
use(22 °C) 19.1
CRC (10−8 Ωm)17.7
LNG (10−8 Ωm)(22 °C) 19.1
WEL (10−8 Ωm)(293 K–298 K) 18
92 U uranium
use0.280 µΩm
CRC (10−8 Ωm)28
LNG (10−8 Ωm)28.0
WEL (10−8 Ωm)(293 K–298 K) 28
93 Np neptunium
use(22 °C) 1.220 µΩm
LNG (10−8 Ωm)(22 °C) 122.0
WEL (10−8 Ωm)(293 K–298 K) 120
94 Pu plutonium
use1.460 µΩm
LNG (10−8 Ωm)146.0
WEL (10−8 Ωm)(293 K–298 K) 150
95 Am americium
use(room temperature) 689 nΩm [1]
96 Cm curium
use(room temperature) 1250 nΩm [2]
T80 K (−193 °C)273 K (0 °C)293 K (20 °C)298 K (25 °C)300 K (27 °C)500 K (227 °C)

Related Research Articles

Elastic properties describe the reversible deformation of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.

<span class="mw-page-title-main">Caesium hydroxide</span> Chemical compound

Caesium hydroxide is a strong base containing the highly reactive alkali metal caesium, much like the other alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. It is the strongest of the five alkali metal hydroxides. Fused Caesium hydroxide dissolves glass by attacking silica framework and it has applications in bringing glass samples into a solution for analytical purposes in commercial glass industry and defense waste processing facility. The melting process is carried out in a nickel or zirconium crucible. Cesium hydroxide fusion at 750°C produces complete dissolution of glass pellets.

The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal, transversal, and extensional.

This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. Electron configurations of elements beyond hassium have never been measured; predictions are used below. As an approximate rule, electron configurations are given by the Aufbau principle and the Madelung rule. However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s2 2s2 2p6 3s2 3p6 3d4 4s2, written as [Ar] 3d4 4s2, but whose actual configuration given in the table below is [Ar] 3d5 4s1.

This page provides supplementary chemical data on barium chloride.

<span class="mw-page-title-main">Yttrium(III) bromide</span> Chemical compound

Yttrium(III) bromide is an inorganic compound with the chemical formula YBr3. It is a white solid. Anhydrous yttrium(III) bromide can be produced by reacting yttrium oxide or yttrium(III) bromide hydrate and ammonium bromide. The reaction proceeds via the intermediate (NH4)3YBr6. Another method is to react yttrium carbide (YC2) and elemental bromine. Yttrium(III) bromide can be reduced by yttrium metal to YBr or Y2Br3. It can react with osmium to produce Y4Br4Os.

<span class="mw-page-title-main">Erbium(III) oxide</span> Chemical compound

Erbium(III) oxide is the inorganic compound with the formula Er2O3. It is a pink paramagnetic solid. It finds uses in various optical materials.

This page provides supplementary chemical data on calcium hydroxide.

<span class="mw-page-title-main">Samarium(II) bromide</span> Chemical compound

Samarium(II) bromide is an inorganic compound with the chemical formula SmBr
2
. It is a brown solid that is insoluble in most solvents but degrades readily in air.

<span class="mw-page-title-main">Niobium disulfide</span> Chemical compound

Niobium disulfide is the chemical compound with the formula NbS2. It is a black layered solid that can be exfoliated into ultrathin grayish sheets similar to other transition metal dichalcogenides. These layers exhibit superconductivity, where the transition temperature increases from ca. 2 to 6 K with the layer thickness increasing from 6 to 12 nm, and then saturates with thickness.

Promethium compounds are compounds containing the element promethium, which normally take the +3 oxidation state. Promethium belongs to the cerium group of lanthanides and is chemically very similar to the neighboring elements. Because of its instability, chemical studies of promethium are incomplete. Even though a few compounds have been synthesized, they are not fully studied; in general, they tend to be pink or red in color. Treatment of acidic solutions containing Pm3+ ions with ammonia results in a gelatinous light-brown sediment of hydroxide, Pm(OH)3, which is insoluble in water. When dissolved in hydrochloric acid, a water-soluble yellow salt, PmCl3, is produced; similarly, when dissolved in nitric acid, a nitrate results, Pm(NO3)3. The latter is also well-soluble; when dried, it forms pink crystals, similar to Nd(NO3)3. The electron configuration for Pm3+ is [Xe] 4f4, and the color of the ion is pink. The ground state term symbol is 5I4. The sulfate is slightly soluble, like the other cerium group sulfates. Cell parameters have been calculated for its octahydrate; they lead to conclusion that the density of Pm2(SO4)3·8 H2O is 2.86 g/cm3. The oxalate, Pm2(C2O4)3·10 H2O, has the lowest solubility of all lanthanide oxalates.

References

  1. Schenkel, R.; Muller, W. (1977). "The electrical resistivity of 241Am metal". Journal of Physics and Chemistry of Solids. 38 (11): 1301–1305. Bibcode:1977JPCS...38.1301S. doi:10.1016/0022-3697(77)90033-6.
  2. Schenkel, R. (1977). "The electrical resistivity of 244Cm metal". Solid State Communications. 23 (6): 389–392. Bibcode:1977SSCom..23..389S. doi:10.1016/0038-1098(77)90239-3.

WEL

As quoted at http://www.webelements.com/ from these sources:

Contents

CRC

As quoted from various sources in an online version of:

CR2

As quoted in an online version of:

which further refers to:

LNG

As quoted from:

See also