Electron configurations of the elements (data page)

Last updated

This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s2 3p3. Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s2 3p3) are written explicitly for all atoms.

Contents

Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below. As an approximate rule, electron configurations are given by the Aufbau principle and the Madelung rule. However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s2 2s2 2p6 3s2 3p6 3d4 4s2, written as [Ar] 3d4 4s2, but whose actual configuration given in the table below is [Ar] 3d5 4s1.

Note that these electron configurations are given for neutral atoms in the gas phase, which are not the same as the electron configurations for the same atoms in chemical environments. In many cases, multiple configurations are within a small range of energies and the irregularities shown below do not necessarily have a clear relation to chemical behaviour. [1] For the undiscovered eighth-row elements, mixing of configurations is expected to be very important, and sometimes the result can no longer be well-described by a single configuration. [2]

Legend
1s2s2p3s3p3d4s4p4d4f5s5p5d5f6s6p6d7s7p
1 H hydrogen  : 1s1
1s1
1
2 He helium  : 1s2
1s2
2
3 Li lithium  : [He] 2s1
1s22s1
21
4 Be beryllium  : [He] 2s2
1s22s2
22
5 B boron  : [He] 2s2 2p1
1s22s22p1
23
6 C carbon  : [He] 2s2 2p2
1s22s22p2
24
7 N nitrogen  : [He] 2s2 2p3
1s22s22p3
25
8 O oxygen  : [He] 2s2 2p4
1s22s22p4
26
9 F fluorine  : [He] 2s2 2p5
1s22s22p5
27
10 Ne neon  : [He] 2s2 2p6
1s22s22p6
28
11 Na sodium  : [Ne] 3s1
1s22s22p63s1
281
12 Mg magnesium  : [Ne] 3s2
1s22s22p63s2
282
13 Al aluminium  : [Ne] 3s2 3p1
1s22s22p63s23p1
283
14 Si silicon  : [Ne] 3s2 3p2
1s22s22p63s23p2
284
15 P phosphorus  : [Ne] 3s2 3p3
1s22s22p63s23p3
285
16 S sulfur  : [Ne] 3s2 3p4
1s22s22p63s23p4
286
17 Cl chlorine  : [Ne] 3s2 3p5
1s22s22p63s23p5
287
18 Ar argon  : [Ne] 3s2 3p6
1s22s22p63s23p6
288
19 K potassium  : [Ar] 4s1
1s22s22p63s23p64s1
2881
20 Ca calcium  : [Ar] 4s2
1s22s22p63s23p64s2
2882
21 Sc scandium  : [Ar] 3d1 4s2
1s22s22p63s23p63d14s2
2892
22 Ti titanium  : [Ar] 3d2 4s2
1s22s22p63s23p63d24s2
28102
23 V vanadium  : [Ar] 3d3 4s2
1s22s22p63s23p63d34s2
28112
24 Cr chromium  : [Ar] 3d5 4s1
1s22s22p63s23p63d54s1
28131
25 Mn manganese  : [Ar] 3d5 4s2
1s22s22p63s23p63d54s2
28132
26 Fe iron  : [Ar] 3d6 4s2
1s22s22p63s23p63d64s2
28142
27 Co cobalt  : [Ar] 3d7 4s2
1s22s22p63s23p63d74s2
28152
28 Ni nickel  : [Ar] 3d8 4s2
1s22s22p63s23p63d84s2
28162
29 Cu copper  : [Ar] 3d10 4s1
1s22s22p63s23p63d104s1
28181
30 Zn zinc  : [Ar] 3d10 4s2
1s22s22p63s23p63d104s2
28182
31 Ga gallium  : [Ar] 3d10 4s2 4p1
1s22s22p63s23p63d104s24p1
28183
32 Ge germanium  : [Ar] 3d10 4s2 4p2
1s22s22p63s23p63d104s24p2
28184
33 As arsenic  : [Ar] 3d10 4s2 4p3
1s22s22p63s23p63d104s24p3
28185
34 Se selenium  : [Ar] 3d10 4s2 4p4
1s22s22p63s23p63d104s24p4
28186
35 Br bromine  : [Ar] 3d10 4s2 4p5
1s22s22p63s23p63d104s24p5
28187
36 Kr krypton  : [Ar] 3d10 4s2 4p6
1s22s22p63s23p63d104s24p6
28188
37 Rb rubidium  : [Kr] 5s1
1s22s22p63s23p63d104s24p65s1
281881
38 Sr strontium  : [Kr] 5s2
1s22s22p63s23p63d104s24p65s2
281882
39 Y yttrium  : [Kr] 4d1 5s2
1s22s22p63s23p63d104s24p64d15s2
281892
40 Zr zirconium  : [Kr] 4d2 5s2
1s22s22p63s23p63d104s24p64d25s2
2818102
41 Nb niobium  : [Kr] 4d4 5s1
1s22s22p63s23p63d104s24p64d45s1
2818121
42 Mo molybdenum  : [Kr] 4d5 5s1
1s22s22p63s23p63d104s24p64d55s1
2818131
43 Tc technetium  : [Kr] 4d5 5s2
1s22s22p63s23p63d104s24p64d55s2
2818132
44 Ru ruthenium  : [Kr] 4d7 5s1
1s22s22p63s23p63d104s24p64d75s1
2818151
45 Rh rhodium  : [Kr] 4d8 5s1
1s22s22p63s23p63d104s24p64d85s1
2818161
46 Pd palladium  : [Kr] 4d10
1s22s22p63s23p63d104s24p64d10
281818
47 Ag silver  : [Kr] 4d10 5s1
1s22s22p63s23p63d104s24p64d105s1
2818181
48 Cd cadmium  : [Kr] 4d10 5s2
1s22s22p63s23p63d104s24p64d105s2
2818182
49 In indium  : [Kr] 4d10 5s2 5p1
1s22s22p63s23p63d104s24p64d105s25p1
2818183
50 Sn tin  : [Kr] 4d10 5s2 5p2
1s22s22p63s23p63d104s24p64d105s25p2
2818184
51 Sb antimony  : [Kr] 4d10 5s2 5p3
1s22s22p63s23p63d104s24p64d105s25p3
2818185
52 Te tellurium  : [Kr] 4d10 5s2 5p4
1s22s22p63s23p63d104s24p64d105s25p4
2818186
53 I iodine  : [Kr] 4d10 5s2 5p5
1s22s22p63s23p63d104s24p64d105s25p5
2818187
54 Xe xenon  : [Kr] 4d10 5s2 5p6
1s22s22p63s23p63d104s24p64d105s25p6
2818188
55 Cs caesium  : [Xe] 6s1
1s22s22p63s23p63d104s24p64d105s25p66s1
28181881
56 Ba barium  : [Xe] 6s2
1s22s22p63s23p63d104s24p64d105s25p66s2
28181882
57 La lanthanum  : [Xe] 5d1 6s2
1s22s22p63s23p63d104s24p64d105s25p65d16s2
28181892
58 Ce cerium  : [Xe] 4f1 5d1 6s2
1s22s22p63s23p63d104s24p64d104f15s25p65d16s2
28181992
59 Pr praseodymium  : [Xe] 4f3 6s2
1s22s22p63s23p63d104s24p64d104f35s25p66s2
28182182
60 Nd neodymium  : [Xe] 4f4 6s2
1s22s22p63s23p63d104s24p64d104f45s25p66s2
28182282
61 Pm promethium  : [Xe] 4f5 6s2
1s22s22p63s23p63d104s24p64d104f55s25p66s2
28182382
62 Sm samarium  : [Xe] 4f6 6s2
1s22s22p63s23p63d104s24p64d104f65s25p66s2
28182482
63 Eu europium  : [Xe] 4f7 6s2
1s22s22p63s23p63d104s24p64d104f75s25p66s2
28182582
64 Gd gadolinium  : [Xe] 4f7 5d1 6s2
1s22s22p63s23p63d104s24p64d104f75s25p65d16s2
28182592
65 Tb terbium  : [Xe] 4f9 6s2
1s22s22p63s23p63d104s24p64d104f95s25p66s2
28182782
66 Dy dysprosium  : [Xe] 4f10 6s2
1s22s22p63s23p63d104s24p64d104f105s25p66s2
28182882
67 Ho holmium  : [Xe] 4f11 6s2
1s22s22p63s23p63d104s24p64d104f115s25p66s2
28182982
68 Er erbium  : [Xe] 4f12 6s2
1s22s22p63s23p63d104s24p64d104f125s25p66s2
28183082
69 Tm thulium  : [Xe] 4f13 6s2
1s22s22p63s23p63d104s24p64d104f135s25p66s2
28183182
70 Yb ytterbium  : [Xe] 4f14 6s2
1s22s22p63s23p63d104s24p64d104f145s25p66s2
28183282
71 Lu lutetium  : [Xe] 4f14 5d1 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d16s2
28183292
72 Hf hafnium  : [Xe] 4f14 5d2 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d26s2
281832102
73 Ta tantalum  : [Xe] 4f14 5d3 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d36s2
281832112
74 W tungsten  : [Xe] 4f14 5d4 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d46s2
281832122
75 Re rhenium  : [Xe] 4f14 5d5 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d56s2
281832132
76 Os osmium  : [Xe] 4f14 5d6 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d66s2
281832142
77 Ir iridium  : [Xe] 4f14 5d7 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d76s2
281832152
78 Pt platinum  : [Xe] 4f14 5d9 6s1
1s22s22p63s23p63d104s24p64d104f145s25p65d96s1
281832171
79 Au gold  : [Xe] 4f14 5d10 6s1
1s22s22p63s23p63d104s24p64d104f145s25p65d106s1
281832181
80 Hg mercury  : [Xe] 4f14 5d10 6s2
1s22s22p63s23p63d104s24p64d104f145s25p65d106s2
281832182
81 Tl thallium  : [Xe] 4f14 5d10 6s2 6p1
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p1
281832183
82 Pb lead  : [Xe] 4f14 5d10 6s2 6p2
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p2
281832184
83 Bi bismuth  : [Xe] 4f14 5d10 6s2 6p3
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p3
281832185
84 Po polonium  : [Xe] 4f14 5d10 6s2 6p4
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p4
281832186
85 At astatine  : [Xe] 4f14 5d10 6s2 6p5
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p5
281832187
86 Rn radon  : [Xe] 4f14 5d10 6s2 6p6
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p6
281832188
87 Fr francium  : [Rn] 7s1
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p67s1
2818321881
88 Ra radium  : [Rn] 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p67s2
2818321882
89 Ac actinium  : [Rn] 6d1 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p66d17s2
2818321892
90 Th thorium  : [Rn] 6d2 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p66d27s2
28183218102
91 Pa protactinium  : [Rn] 5f2 6d1 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f26s26p66d17s2
2818322092
92 U uranium  : [Rn] 5f3 6d1 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f36s26p66d17s2
2818322192
93 Np neptunium  : [Rn] 5f4 6d1 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f46s26p66d17s2
2818322292
94 Pu plutonium  : [Rn] 5f6 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f66s26p67s2
2818322482
95 Am americium  : [Rn] 5f7 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f76s26p67s2
2818322582
96 Cm curium  : [Rn] 5f7 6d1 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f76s26p66d17s2
2818322592
97 Bk berkelium  : [Rn] 5f9 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f96s26p67s2
2818322782
98 Cf californium  : [Rn] 5f10 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f106s26p67s2
2818322882
99 Es einsteinium  : [Rn] 5f11 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f116s26p67s2
2818322982
100 Fm fermium  : [Rn] 5f12 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f126s26p67s2
2818323082
101 Md mendelevium  : [Rn] 5f13 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f136s26p67s2
2818323182
102 No nobelium  : [Rn] 5f14 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p67s2
2818323282
103 Lr lawrencium  : [Rn] 5f14 7s2 7p1
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p67s27p1
2818323283
104 Rf rutherfordium  : [Rn] 5f14 6d2 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d27s2
28183232102
105 Db dubnium  : [Rn] 5f14 6d3 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d37s2
28183232112
106 Sg seaborgium  : [Rn] 5f14 6d4 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d47s2
28183232122
107 Bh bohrium  : [Rn] 5f14 6d5 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d57s2
28183232132
108 Hs hassium  : [Rn] 5f14 6d6 7s2
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d67s2
28183232142
109 Mt meitnerium  : [Rn] 5f14 6d7 7s2 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d77s2
28183232152
110 Ds darmstadtium  : [Rn] 5f14 6d8 7s2 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d87s2
28183232162
111 Rg roentgenium  : [Rn] 5f14 6d9 7s2 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d97s2
28183232172
112 Cn copernicium  : [Rn] 5f14 6d10 7s2 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s2
28183232182
113 Nh nihonium  : [Rn] 5f14 6d10 7s2 7p1 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s27p1
28183232183
114 Fl flerovium  : [Rn] 5f14 6d10 7s2 7p2 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s27p2
28183232184
115 Mc moscovium  : [Rn] 5f14 6d10 7s2 7p3 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s27p3
28183232185
116 Lv livermorium  : [Rn] 5f14 6d10 7s2 7p4 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s27p4
28183232186
117 Ts tennessine  : [Rn] 5f14 6d10 7s2 7p5 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s27p5
28183232187
118 Og oganesson  : [Rn] 5f14 6d10 7s2 7p6 (predicted)
1s22s22p63s23p63d104s24p64d104f145s25p65d105f146s26p66d107s27p6
28183232188
   Group 18 element (noble gas), has a complete shell. Complete shells are referred to as "[Ar]" for argon etc.

See also

Related Research Articles

Bohrium is a synthetic chemical element; it has symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in particle accelerators but is not found in nature. All known isotopes of bohrium are highly radioactive; the most stable known isotope is 270Bh with a half-life of approximately 2.4 minutes, though the unconfirmed 278Bh may have a longer half-life of about 11.5 minutes.

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

Lawrencium is a synthetic chemical element; it has symbol Lr and atomic number 103. It is named after Ernest Lawrence, inventor of the cyclotron, a device that was used to discover many artificial radioactive elements. A radioactive metal, lawrencium is the eleventh transuranium element, the third transfermium, and the last member of the actinide series. Like all elements with atomic number over 100, lawrencium can only be produced in particle accelerators by bombarding lighter elements with charged particles. Fourteen isotopes of lawrencium are currently known; the most stable is 266Lr with half-life 11 hours, but the shorter-lived 260Lr is most commonly used in chemistry because it can be produced on a larger scale.

Mendelevium is a synthetic chemical element; it has symbol Md and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopic quantities by neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element and the first transfermium. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. Seventeen isotopes are known; the most stable is 258Md with half-life 51.59 days; however, the shorter-lived 256Md is most commonly used in chemistry because it can be produced on a larger scale.

Nobelium is a synthetic chemical element; it has symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranium element, the second transfermium, and is the penultimate member of the actinide series. Like all elements with atomic number over 100, nobelium can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of twelve nobelium isotopes are known to exist; the most stable is 259No with a half-life of 58 minutes, but the shorter-lived 255No is most commonly used in chemistry because it can be produced on a larger scale.

<span class="mw-page-title-main">Periodic table</span> Tabular arrangement of the chemical elements ordered by atomic number

The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.

Rutherfordium is a synthetic chemical element; it has symbol Rf and atomic number 104. It is named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a particle accelerator. It is radioactive; the most stable known isotope, 267Rf, has a half-life of about 48 minutes.

In chemistry, a transition metal is a chemical element in the d-block of the periodic table, though the elements of group 12 are sometimes excluded. The lanthanide and actinide elements are called inner transition metals and are sometimes considered to be transition metals as well.

<span class="mw-page-title-main">Ionization energy</span> Energy needed to remove an electron

In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as

<span class="mw-page-title-main">Electron configuration</span> Mode of arrangement of electrons in different shells of an atom

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six electrons, respectively.

An extended periodic table theorizes about chemical elements beyond those currently known and proven. The element with the highest atomic number known is oganesson (Z = 118), which completes the seventh period (row) in the periodic table. All elements in the eighth period and beyond thus remain purely hypothetical.

A period 7 element is one of the chemical elements in the seventh row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases: a new row is begun when chemical behavior begins to repeat, meaning that elements with similar behavior fall into the same vertical columns. The seventh period contains 32 elements, tied for the most with period 6, beginning with francium and ending with oganesson, the heaviest element currently discovered. As a rule, period 7 elements fill their 7s shells first, then their 5f, 6d, and 7p shells in that order, but there are exceptions, such as uranium.

<span class="mw-page-title-main">Group 3 element</span> Group of chemical elements

Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member.

<span class="mw-page-title-main">Valence electron</span> Electron in the outer shell of an atoms energy levels

In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with both atoms in the bond each contributing one valence electron.

<span class="mw-page-title-main">Aufbau principle</span> Principle of atomic physics

In atomic physics and quantum chemistry, the Aufbau principle, also called the Aufbau rule, states that in the ground state of an atom or ion, electrons first fill subshells of the lowest available energy, then fill subshells of higher energy. For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s2 2s2 2p6 3s2 3p3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, and so on.

The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.

Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium. By definition, superheavy elements are also transuranium elements, i.e., having atomic numbers greater than that of uranium (92). Depending on the definition of group 3 adopted by authors, lawrencium may also be included to complete the 6d series.

Core electrons are the electrons in an atom that are not valence electrons and do not participate directly in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, unlike valence electrons, core electrons play a secondary role in chemical bonding and reactions by screening the positive charge of the atomic nucleus from the valence electrons.

<span class="mw-page-title-main">Periodic trends</span> Specific recurring patterns that are present in the modern periodic table

In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dmitri Mendeleev in 1863. Major periodic trends include atomic radius, ionization energy, electron affinity, electronegativity, nucleophilicity, electrophilicity, valency, nuclear charge, and metallic character. Mendeleev built the foundation of the periodic table. Mendeleev organized the elements based on atomic weight, leaving empty spaces where he believed undiscovered elements would take their places. Mendeleev’s discovery of this trend allowed him to predict the existence and properties of three unknown elements, which were later discovered by other chemists and named gallium, scandium, and germanium. English physicist Henry Moseley discovered that organizing the elements by atomic number instead of atomic weight would naturally group elements with similar properties.

References

  1. Jørgensen, Christian K. (1988). "Influence of rare earths on chemical understanding and classification". Handbook on the Physics and Chemistry of Rare Earths. Vol. 11. pp. 197–292. doi:10.1016/S0168-1273(88)11007-6. ISBN   9780444870803.
  2. Nefedov, V. I.; Trzhaskovskaya, M. B.; Yarzhemskii, V. G. (2006). "Electronic Configurations and the Periodic Table for Superheavy Elements" (PDF). Doklady Physical Chemistry. 408 (Part 2). Pleaides Publishing: 149–151. doi:10.1134/S0012501606060029. S2CID   95738861 . Retrieved 25 September 2020. configuration interaction is crucial in more than 30% of cases since its consideration leads to another ground-state configuration.

All sources concur with the data above except in the instances listed separately:

NIST

This website is also cited in the CRC Handbook as source of Section 1, subsection Electron Configuration of Neutral Atoms in the Ground State.

CRC

WebElements

Lange

Hill and Petrucci

Hoffman, Lee, and Pershina

Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1722. ISBN   1-4020-3555-1.

This book contains predicted electron configurations for the elements up to 172, as well as 184, based on relativistic Dirac–Fock calculations by B. Fricke in Fricke, B. (1975). Dunitz, J. D. (ed.). "Superheavy elements a prediction of their chemical and physical properties". Structure and Bonding. 21. Berlin: Springer-Verlag: 89–144. doi:10.1007/BFb0116496. ISBN   978-3-540-07109-9.