Part of a series on the |
Periodic table |
---|
Since Dimitri Mendeleev formulated the periodic law in 1871, and published an associated periodic table of chemical elements, authors have experimented with varying types of periodic tables including for teaching, aesthetic or philosophical purposes.
Earlier, in 1869, Mendeleev had mentioned different layouts including short, medium, and even cubic forms. It appeared to him that the latter (three-dimensional) form would be the most natural approach but that "attempts at such a construction have not led to any real results". [2] [n 1] On spiral periodic tables, "Mendeleev...steadfastly refused to depict the system as [such]...His objection was that he could not express this function mathematically." [4]
In 1934, George Quam, a chemistry professor at Long Island University, New York, and Mary Quam, a librarian at the New York Public Library compiled and published a bibliography of 133 periodic tables using a five-fold typology: I. short; II. long (including triangular); III. spiral; IV. helical, and V. miscellaneous.
In 1952, Moeller expressed disdain as to the many types of periodic table:
The literature is replete with suggested (and discarded) modifications of the M periodic table. In fact so many modifications have appeared that one is tempted to conclude that practically every author has his [sic] own concept of what a workable arrangement must be. Unfortunately, the majority of the tabulations proposed are either unwieldy or utterly worthless, and only a few valuable suggestions have been made. Geometry does not permit of an arrangement which is sufficiently ideal to serve all the required purposes equally well. Thus the many three-dimensional models, embracing globes, helices, cones, prisms, castles, etc., are interesting but lacking in utility. To a lesser extent, the more involved two-dimensional arrangements do little toward solving the difficulty, and essentially the only suggestions as to modifications which are truly constructive are those centering in reflection of electronic configurations.
Certainly the most useful of these modifications, and at the same time one of the earliest to be proposed, is the so-called long or [18-column]...table. [5]
In 1954, Tomkeieff referred to the three principle types of periodic table as helical, rectilinear, and spiral. He added that, "unfortunately there also a number of freaks". [6]
In 1974 Edward Mazurs, a professor of chemistry, published a survey and analysis of about seven hundred periodic tables that had been published in the preceding one hundred years; he recognized short, medium, long, helical, spiral, series tables, and tables not classified.
In 1999 Mark Leach, a chemist, inaugurated the INTERNET database of Periodic Tables. It has over 1200 entries as of May 2023. [n 2] While the database is a chronological compilation, specific types of periodic tables that can be searched for are spiral and helical; 3-dimensional; and miscellaneous.
For convenience, periodic tables may be typified as either: 1. short; 2. triangular; 3. medium; 4. long; 5. continuous (circular, spiral, lemniscate, or helical); 6. folding; or 7. spatial. Tables that defy easy classification are counted as type 8. unclassified.
Short tables have around eight columns. This form became popular following the publication of Mendeleev's eight-column periodic table in 1871.
Also shown in this section is a modernized version of the same table.
Mendeleev and others who discovered chemical periodicity in the 1860s had noticed that when the elements were arranged in order of their atomic weights there was as an approximate repetition of physiochemical properties after every eight elements. Consequently, Mendeleev organized the elements known at that time into a table with eight columns. He used the table to predict the properties of then unknown elements. While his hit rate was less than 50% it was his successes that propelled the widespread acceptance of the idea of a periodic table of the chemical elements. [8] The eight-column style remains popular to this day, most notably in Russia, Mendeleev's country of birth.
An earlier attempt by Newlands, an English chemist, to present the nub of the same idea to the London Chemical Society, in 1866, was unsuccessful; [9] members were less than receptive to theoretical ideas, as was the British tendency at the time. [10] He referred to his idea as the Law of Octaves, at one point drawing an analogy with an eight-key musical scale.
John Gladstone, a fellow chemist, objected on the basis that Newland's table presumed no elements remained to be discovered. "The last few years had brought forth thallium, indium, caesium, and rubidium, and now the finding of one more would throw out the whole system." [9] He believed there was as close an analogy between the metals named in the last vertical column as in any of the elements standing on the same horizontal line.
Fellow English chemist Carey Foster humorously inquired of Newlands whether he had ever examined the elements according to the order of their initial letters. Foster believed that any arrangement would present occasional coincidences, but he condemned one which placed so far apart manganese and chromium, or iron from nickel and cobalt.
The advantages of the short form of periodic table are its compact size and that it shows the relationships between main group elements and transition metal groups
Its disadvantages are that it appears to group dissimilar elements, such as chlorine and manganese, together; the separation of metals and nonmetals is hard to discern; there are "inconsistencies in the grouping together of elements giving colorless, diamagnetic ions with elements giving colored, paramagnetic ions; and [a] lack of reasonable positions for hydrogen, the lanthanide elements, and the actinide elements." [11]
Some other notable short periodic tables include:
Triangular tables have column widths of 2-8-18-32 or thereabouts. An early example, appearing in 1882, was provided by Bayley. [27]
Through the use of connecting lines, such tables make it easier to indicate analogous properties among the elements.
In some ways they represent a form intermediate between the short and medium tables, since the average width of the fully mature version (with widths of 2+8+18+32 = 60) is 15 columns.
An early drawback of this form was to make predictions for missing elements based on considerations of symmetry. For example, Bayely considered the rare earth metals to be indirect analogues of other elements such as, for example, zirconium and niobium, a presumption which turned out to be largely unfounded. [28]
Advantages of this form are its aesthetic appeal, and relatively compact size; disadvantages are its width, the fact that it is harder to draw, and interpreting certain periodic trends or relationships may be more challenging compared to the traditional rectangular format.
Some other notable triangular periodic tables include:
Medium tables have around 18 columns. The popularity of this form is thought to be a result of it having a good balance of features in terms of ease of construction and size, and its depiction of atomic order and periodic trends. [43]
Deming's version of a medium table, which appeared in the first edition of his 1923 textbook "General Chemistry: An Elementary Survey Emphasizing Industrial Applications of Fundamental Principles", has been credited with popularizing the 18-column form. [44] [n 6]
LeRoy [45] referred to Deming's table, "this...being better known as the 'eighteen columns'-form" as representing "a very marked improvement over the original Mendeleef type as far as presentation to beginning classes is concerned."
Merck and Company prepared a handout form of Deming's table, in 1928, which was widely circulated in American schools. By the 1930s his table was appearing in handbooks and encyclopedias of chemistry. It was also distributed for many years by the Sargent-Welch Scientific Company. [46] [47] [48]
The advantages of the medium form are that it correlates the positions of the elements with their electronic structures, accommodates the vertical, horizontal and diagonal trends that characterise the elements, and separates the metals and nonmetals; its disadvantages are that it obscures the relationships between main group elements and transition metals.
Some other notable medium tables include:
Long tables have around 32 columns. Early examples are given by Bassett (1892), [58] with 37 columns arranged albeit vertically rather than horizontally; Gooch & Walker (1905), [59] with 25 columns; and by Werner (1905), [60] with 33 columns.
In the first image in this section, of a so-called left step table:
The elements remain positioned in order of atomic number (Z).
The left step table was developed by Charles Janet, in 1928, originally for aesthetic purposes. That being said it shows a reasonable correspondence with the Madelung energy ordering rule this being a notional sequence in which the electron shells of the neutral atoms in their ground states are filled.
A more conventional long form of periodic table is included for comparison.
The advantage of the long form is that shows where the lanthanides and actinides fit into the periodic table; its disadvantage is its width.
Some other notable long tables include:
Encompassing circular, spiral, lemniscate, or helical tables.
Crookes's lemniscate periodic table, shown in this section, has the following elements falling under one another:
H | He | Li | Gl | B | C | N | O | F | Na | Mg | Al | Si | P | S |
Cl | Ar | K | Ca | Sc | Ti | V | Cr | Mn·Fe·Ni·Co | Cu | Zn | Ga | Ge | As | Se |
Br | Kr | Rb | Sr | Yt | Zr | Nb | Mo | Rh·Ru·Pd | Ag | Cd | In | Sn | Sb | Te |
I | – | Cs | Ba | La | Ce | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) |
( ) | – | ( ) | ( ) | ( ) | ( ) | Ta | W | Ir·Pt·Os | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) |
– | – | – | – | – | Th | – | Ur | – | – | – | – | – | – | – |
The collocation of manganese with iron, nickel and cobalt is later seen in the modernised version of von Bichowsky's table of 1918, in the unclassified section of this article.
The French geologist Alexandre-Émile Béguyer de Chancourtois was the first person to make use of atomic weights to produce a classification of periodicity. He drew the elements as a continuous spiral around a metal cylinder divided into 16 parts. [73] The atomic weight of oxygen was taken as 16 and was used as the standard against which all the other elements were compared. Tellurium was situated at the centre, prompting vis tellurique, or telluric screw.
The advantage of this form is that it emphasizes, to a greater or lesser degree, that the elements form a continuous sequence; that said, continuous tables are harder to construct, read and memorize than the traditional rectangular form of periodic table.
Some other notable forms of continuous periodic tables include:
Such tables, which incorporate a folding mechanism, are relatively uncommon:
The advantages of such tables are their novelty and that they can depict relationships that ordinarily require spatial periodic tables, yet retain the portability and convenience of two-dimensional tables. A disadvantage is that they require marginally more effort to construct.
Spatial tables pass through three or more dimensions (helical tables are instead classed as continuous tables). Such tables are relatively niche and not as commonly used as traditional tables. While they offer unique advantages, their complexity and customization requirements make them more suitable for specialized research, advanced education, or specific areas of study where a deeper understanding of multidimensional relationships is desired.
Advantages of periodic tables of three or more dimensions include:
Disadvantages are:
Some other notable spatial periodic tables include:
Unclassified periodic tables defy easy classification:
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus. Atoms of the same element can have different numbers of neutrons in their nuclei, known as isotopes of the element. Two or more atoms can combine to form molecules. Some elements are formed from molecules of identical atoms, e. g. atoms of hydrogen (H) form diatomic molecules (H2). Chemical compounds are substances made of atoms of different elements; they can have molecular or non-molecular structure. Mixtures are materials containing different chemical substances; that means (in case of molecular substances) that they contain different types of molecules. Atoms of one element can be transformed into atoms of a different element in nuclear reactions, which change an atom's atomic number.
Mendelevium is a synthetic chemical element; it has symbol Md and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopic quantities by neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element and the first transfermium. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. Seventeen isotopes are known; the most stable is 258Md with half-life 51.59 days; however, the shorter-lived 256Md is most commonly used in chemistry because it can be produced on a larger scale.
In chemistry and atomic physics, the main group is the group of elements whose lightest members are represented by helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, and fluorine as arranged in the periodic table of the elements. The main group includes the elements in groups 1 and 2 (s-block), and groups 13 to 18 (p-block). The s-block elements are primarily characterised by one main oxidation state, and the p-block elements, when they have multiple oxidation states, often have common oxidation states separated by two units.
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.
Dmitri Ivanovich Mendeleev was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known elements, such as the valence and atomic weight of uranium, but also to predict the properties of three elements that were yet to be discovered.
Dmitri Mendeleev published a periodic table of the chemical elements in 1869 based on properties that appeared with some regularity as he laid out the elements from lightest to heaviest. When Mendeleev proposed his periodic table, he noted gaps in the table and predicted that then-unknown elements existed with properties appropriate to fill those gaps. He named them eka-boron, eka-aluminium, eka-silicon, and eka-manganese, with respective atomic masses of 44, 68, 72, and 100.
A period on the periodic table is a row of chemical elements. All elements in a row have the same number of electron shells. Each next element in a period has one more proton and is less metallic than its predecessor. Arranged this way, elements in the same group (column) have similar chemical and physical properties, reflecting the periodic law. For example, the halogens lie in the second-to-last group and share similar properties, such as high reactivity and the tendency to gain one electron to arrive at a noble-gas electronic configuration. As of 2022, a total of 118 elements have been discovered and confirmed.
In the context of the periodic table a nonmetal is a chemical element that mostly lacks distinctive metallic properties. They range from colorless gases like hydrogen to shiny crystals like iodine. Physically, they are usually lighter than elements that form metals and are often poor conductors of heat and electricity. Chemically, nonmetals have relatively high electronegativity or usually attract electrons in a chemical bond with another element, and their oxides tend to be acidic.
A period 6 element is one of the chemical elements in the sixth row (or period) of the periodic table of the chemical elements, including the lanthanides. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The sixth period contains 32 elements, tied for the most with period 7, beginning with caesium and ending with radon. Lead is currently the last stable element; all subsequent elements are radioactive. For bismuth, however, its only primordial isotope, 209Bi, has a half-life of more than 1019 years, over a billion times longer than the current age of the universe. As a rule, period 6 elements fill their 6s shells first, then their 4f, 5d, and 6p shells, in that order; however, there are exceptions, such as gold.
A period 7 element is one of the chemical elements in the seventh row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases: a new row is begun when chemical behavior begins to repeat, meaning that elements with similar behavior fall into the same vertical columns. The seventh period contains 32 elements, tied for the most with period 6, beginning with francium and ending with oganesson, the heaviest element currently discovered. As a rule, period 7 elements fill their 7s shells first, then their 5f, 6d, and 7p shells in that order, but there are exceptions, such as uranium.
Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member.
In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with both atoms in the bond each contributing one valence electron.
The periodic table is an arrangement of the chemical elements, structured by their atomic number, electron configuration and recurring chemical properties. In the basic form, elements are presented in order of increasing atomic number, in the reading sequence. Then, rows and columns are created by starting new rows and inserting blank cells, so that rows (periods) and columns (groups) show elements with recurring properties. For example, all elements in group (column) 18 are noble gases that are largely—though not completely—unreactive.
Julius Lothar Meyer was a German chemist. He was one of the pioneers in developing the earliest versions of the periodic table of the chemical elements. The Russian chemist Dmitri Mendeleev and he had both worked with Robert Bunsen. Meyer never used his first given name and was known throughout his life simply as Lothar Meyer.
In nuclear chemistry, the actinide concept proposed that the actinides form a second inner transition series homologous to the lanthanides. Its origins stem from observation of lanthanide-like properties in transuranic elements in contrast to the distinct complex chemistry of previously known actinides. Glenn Theodore Seaborg, one of the researchers who synthesized transuranic elements, proposed the actinide concept in 1944 as an explanation for observed deviations and a hypothesis to guide future experiments. It was accepted shortly thereafter, resulting in the placement of a new actinide series comprising elements 89 (actinium) to 103 (lawrencium) below the lanthanides in Dmitri Mendeleev's periodic table of the elements.
Alexandre-Émile Béguyer de Chancourtois was a French geologist and mineralogist who was the first to arrange the chemical elements in order of atomic weights, doing so in 1862. De Chancourtois only published his paper, but did not publish his actual graph with the irregular arrangement. Although his publication was significant, it was ignored by chemists as it was written in terms of geology. It was Dmitri Mendeleev's table published in 1869 that became most recognized. De Chancourtois was also a professor of mine surveying, and later geology at the École Nationale Supérieure des Mines de Paris. He also was the Inspector of Mines in Paris, and was widely responsible for implementing many mine safety regulations and laws during the time.
There are currently 118 known chemical elements with a wide range of physical and chemical properties. Amongst this diversity, scientists have found it useful to apply names for various sets of elements that have similar properties, to varying degrees. Many of these sets are formally recognized by the standards body IUPAC.
A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term seems to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-block, p-block, d-block, f-block and g-block.
The dividing line between metals and nonmetals can be found, in varying configurations, on some representations of the periodic table of the elements. Elements to the lower left of the line generally display increasing metallic behaviour; elements to the upper right display increasing nonmetallic behaviour. When presented as a regular stair-step, elements with the highest critical temperature for their groups lie just below the line.
The actinide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the actinide series, from left to right.