A noble metal is ordinarily regarded as a metallic element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, osmium, iridium) are most often so classified. Silver, copper, and mercury are sometimes included as noble metals, but each of these usually occurs in nature combined with sulfur.
In more specialized fields of study and applications the number of elements counted as noble metals can be smaller or larger. It is sometimes used for the three metals copper, silver, and gold which have filled d-bands, while it is often used mainly for silver and gold when discussing surface-enhanced Raman spectroscopy involving metal nanoparticles. It is sometimes applied more broadly to any metallic or semimetallic element that does not react with a weak acid and give off hydrogen gas in the process. This broader set includes copper, mercury, technetium, rhenium, arsenic, antimony, bismuth, polonium, gold, the six platinum group metals, and silver. In dentistry, silver is not always considered a noble metal because it is subject to corrosion when present in the mouth.
While lists of noble metals can differ, they tend to cluster around the six platinum group metals (ruthenium, rhodium, palladium, osmium, iridium, platinum) plus gold.
In addition to this term's function as a compound noun, there are circumstances where noble is used as an adjective for the noun metal. A galvanic series is a hierarchy of metals (or other electrically conductive materials, including composites and semimetals) that runs from noble to active, and allows one to predict how materials will interact in the environment used to generate the series. In this sense of the word, graphite is more noble than silver and the relative nobility of many materials is highly dependent upon context, as for aluminium and stainless steel in conditions of varying pH. [5]
The term noble metal can be traced back to at least the late 14th century [6] and has slightly different meanings in different fields of study and application.
Prior to Mendeleev's publication in 1869 of the first (eventually) widely accepted periodic table, Odling published a table in 1864, in which the "noble metals" rhodium, ruthenium, palladium; and platinum, iridium, and osmium were grouped together, [7] and adjacent to silver and gold.
The noble metals are siderophiles (iron-lovers). They tend to sink into the Earth's core because they dissolve readily in iron either as solid solutions or in the molten state. Most siderophile elements have practically no affinity whatsoever for oxygen: indeed, oxides of gold are thermodynamically unstable with respect to the elements.
Copper, silver, gold, and the six platinum group metals are the only native metals that occur naturally in relatively large amounts.[ citation needed ]
Noble metals tend to be resistant to oxidation and other forms of corrosion, and this corrosion resistance is often considered to be a defining characteristic. Some exceptions are described below.
Copper is dissolved by nitric acid and aqueous potassium cyanide.
Ruthenium can be dissolved in aqua regia, a highly concentrated mixture of hydrochloric acid and nitric acid, only when in the presence of oxygen, while rhodium must be in a fine pulverized form. Palladium and silver are soluble in nitric acid, while silver's solubility in aqua regia is limited by the formation of silver chloride precipitate. [8]
Rhenium reacts with oxidizing acids, and hydrogen peroxide, and is said to be tarnished by moist air. Osmium and iridium are chemically inert in ambient conditions. [9] Platinum and gold can be dissolved in aqua regia. [10] Mercury reacts with oxidising acids. [9]
In 2010, US researchers discovered that an organic "aqua regia" in the form of a mixture of thionyl chloride SOCl2 and the organic solvent pyridine C5H5N achieved "high dissolution rates of noble metals under mild conditions, with the added benefit of being tunable to a specific metal" for example, gold but not palladium or platinum. [11]
The expression noble metal is sometimes confined to copper, silver, and gold since their full d-subshells can contribute to their noble character. [12] There are also known to be significant contributions from how readily there is overlap of the d-electron states with the orbitals of other elements, particularly for gold. [13] Relativistic contributions are also important, [14] playing a role in the catalytic properties of gold. [15]
The elements to the left of gold and silver have incompletely filled d-bands, which is believed to play a role in their catalytic properties. A common explanation is the d-band filling model of Hammer and Jens Nørskov, [16] [17] where the total d-bands are considered, not just the unoccupied states.
The low-energy plasmon properties are also of some importance, particularly those of silver and gold nanoparticles for surface-enhanced Raman spectroscopy, localized surface plasmons and other plasmonic properties. [18] [19]
Standard reduction potentials in aqueous solution are also a useful way of predicting the non-aqueous chemistry of the metals involved. Thus, metals with high negative potentials, such as sodium, or potassium, will ignite in air, forming the respective oxides. These fires cannot be extinguished with water, which also react with the metals involved to give hydrogen, which is itself explosive. Noble metals, in contrast, are disinclined to react with oxygen and, for that reason (as well as their scarcity) have been valued for millennia, and used in jewellery and coins. [20]
Element | Z | G | P | Reaction | SRP(V) | EN | EA |
---|---|---|---|---|---|---|---|
Gold ✣ | 79 | 11 | 6 | Au3+ + 3 e− → Au | 1.5 | 2.54 | 223 |
Platinum ✣ | 78 | 10 | 6 | Pt2+ + 2 e− → Pt | 1.2 | 2.28 | 205 |
Iridium ✣ | 77 | 9 | 6 | Ir3+ + 3 e− → Ir | 1.16 | 2.2 | 151 |
Palladium ✣ | 46 | 10 | 5 | Pd2+ + 2 e− → Pd | 0.915 | 2.2 | 54 |
Osmium ✣ | 76 | 8 | 6 | OsO 2 + 4 H+ + 4 e− → Os + 2 H 2O | 0.85 | 2.2 | 104 |
Mercury | 80 | 12 | 6 | Hg2+ + 2 e− → Hg | 0.85 | 2.0 | −50 |
Rhodium ✣ | 45 | 9 | 5 | Rh3+ + 3 e− → Rh | 0.8 | 2.28 | 110 |
Silver ✣ | 47 | 11 | 5 | Ag+ + e− → Ag | 0.7993 | 1.93 | 126 |
Ruthenium ✣ | 44 | 8 | 5 | Ru3+ + 3 e− → Ru | 0.6 | 2.2 | 101 |
Polonium ☢ | 84 | 16 | 6 | Po2+ + 2 e− → Po | 0.6 | 2.0 | 136 |
Water | 2 H 2O + 4 e− +O 2 → 4 OH− | 0.4 | |||||
Copper | 29 | 11 | 4 | Cu2+ + 2 e− → Cu | 0.339 | 2.0 | 119 |
Bismuth | 83 | 15 | 6 | Bi3+ + 3 e− → Bi | 0.308 | 2.02 | 91 |
Technetium ☢ | 43 | 7 | 6 | TcO 2 + 4 H+ + 4 e− → Tc + 2 H 2O | 0.28 | 1.9 | 53 |
Rhenium | 75 | 7 | 6 | ReO 2 + 4 H+ + 4 e− → Re + 2 H 2O | 0.251 | 1.9 | 6 |
Arsenic MD | 33 | 15 | 4 | As 4O 6 + 12 H+ + 12 e− → 4 As + 6 H 2O | 0.24 | 2.18 | 78 |
Antimony MD | 51 | 15 | 5 | Sb 2O 3 + 6 H+ + 6 e− → 2 Sb + 3 H 2O | 0.147 | 2.05 | 101 |
Z atomic number; G group; P period; SRP standard reduction potential; EN electronegativity; EA electron affinity | |||||||
✣ traditionally recognized as a noble metal; MD metalloid; ☢ radioactive |
The adjacent table lists standard reduction potential in volts; [21] electronegativity (revised Pauling); and electron affinity values (kJ/mol), for some metals and metalloids.
The simplified entries in the reaction column can be read in detail from the Pourbaix diagrams of the considered element in water. Noble metals have large positive potentials; [22] elements not in this table have a negative standard potential or are not metals.
Electronegativity is included since it is reckoned to be, "a major driver of metal nobleness and reactivity". [3]
The black tarnish commonly seen on silver arises from its sensitivity to sulphur containing gases such as hydrogen sulfide:
Rayner-Canham [4] contends that, "silver is so much more chemically-reactive and has such a different chemistry, that it should not be considered as a 'noble metal'." In dentistry, silver is not regarded as a noble metal due to its tendency to corrode in the oral environment. [23]
The relevance of the entry for water is addressed by Li et al. [24] in the context of galvanic corrosion. Such a process will only occur when:
The superheavy elements from hassium (element 108) to livermorium (116) inclusive are expected to be "partially very noble metals"; chemical investigations of hassium has established that it behaves like its lighter congener osmium, and preliminary investigations of nihonium and flerovium have suggested but not definitively established noble behavior. [25] Copernicium's behaviour seems to partly resemble both its lighter congener mercury and the noble gas radon. [26]
Element | I | II | III | IV | VI | VII | VIII |
---|---|---|---|---|---|---|---|
Copper | 1232 | 1326 | |||||
Ruthenium | d1300 | 25 | |||||
Rhodium | d1100 | d1050 | |||||
Palladium | d750 [n 1] | ||||||
Silver | d200 | d100 [n 2] | |||||
Rhenium | d1000 | d400 | 327 | ||||
Osmium | d500 | 40 | |||||
Iridium | d1100 | ||||||
Platinum | 450 | ||||||
Gold | d150 | ||||||
Mercury | d500 | ||||||
Strontium‡ | 2430 | ||||||
Molybdenum‡ | 801 | ||||||
AntimonyMD | 655 | ||||||
Lanthanum‡ | 2320 | ||||||
Bismuth‡ | 817 | ||||||
d = decomposes; ‡ = not a noble metal; MD = metalloid |
As long ago as 1890, Hiorns observed as follows:
Smith, writing in 1946, continued the theme:
Such nobility is mainly associated with the relatively high electronegativity values of the noble metals, resulting in only weakly polar covalent bonding with oxygen. [3] The table lists the melting points of the oxides of the noble metals, and for some of those of the non-noble metals, for the elements in their most stable oxidation states.
All the noble metals can act as catalysts. For example, platinum is used in catalytic converters, devices which convert toxic gases produced in car engines, such as the oxides of nitrogen, into non-polluting substances.[ citation needed ]
Gold has many industrial applications; it is used as a catalyst in hydrogenation and the water gas shift reaction.[ citation needed ]
Iridium is a chemical element; it has symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal with a density of 22.56 g/cm3 (0.815 lb/cu in) as defined by experimental X-ray crystallography. 191Ir and 193Ir are the only two naturally occurring isotopes of iridium, as well as the only stable isotopes; the latter is the more abundant. It is one of the most corrosion-resistant metals, even at temperatures as high as 2,000 °C (3,630 °F).
A metal is a material that, when polished or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. These properties are all associated with having electrons available at the Fermi level, as against nonmetallic materials which do not. Metals are typically ductile and malleable.
Osmium is a chemical element; it has symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, mostly in platinum ores. Osmium is the densest naturally occurring element. When experimentally measured using X-ray crystallography, it has a density of 22.59 g/cm3. Manufacturers use its alloys with platinum, iridium, and other platinum-group metals to make fountain pen nib tipping, electrical contacts, and in other applications that require extreme durability and hardness.
Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form a group of elements referred to as the platinum group metals (PGMs). They have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.
Platinum is a chemical element; it has symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish platina, a diminutive of plata "little silver".
Ruthenium is a chemical element; it has symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is unreactive to most other chemicals. Karl Ernst Claus, a Russian-born scientist of Baltic-German ancestry, discovered the element in 1844 at Kazan State University and named ruthenium in honor of Russia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 to some 35.5 tonnes in 2017. Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario, and in pyroxenite deposits in South Africa.
Rhodium is a chemical element; it has symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isotope, which is 103Rh. Naturally occurring rhodium is usually found as a free metal or as an alloy with similar metals and rarely as a chemical compound in minerals such as bowieite and rhodplumsite. It is one of the rarest and most valuable precious metals. Rhodium is a group 9 element.
Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds from the formation of nitrosyl chloride and nitrogen dioxide. It was so named by alchemists because it can dissolve noble metals like gold and platinum, though not all metals.
A period 5 element is one of the chemical elements in the fifth row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fifth period contains 18 elements, beginning with rubidium and ending with xenon. As a rule, period 5 elements fill their 5s shells first, then their 4d, and 5p shells, in that order; however, there are exceptions, such as rhodium.
Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Precious metals, particularly the noble metals, are more corrosion resistant and less chemically reactive than most elements. They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.
The Goldschmidt classification, developed by Victor Goldschmidt (1888–1947), is a geochemical classification which groups the chemical elements within the Earth according to their preferred host phases into lithophile (rock-loving), siderophile (iron-loving), chalcophile, and atmophile (gas-loving) or volatile.
The platinum-group metals (PGMs), also known as the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs), are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block.
Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). "Group 8" is the modern standard designation for this group, adopted by the IUPAC in 1990. It should not be confused with "group VIIIA" in the CAS system, which is group 18, the noble gases. In the older group naming systems, this group was combined with groups 9 and 10 and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system". The elements in this group are all transition metals that lie in the d-block of the periodic table.
Group 9, by modern IUPAC numbering, is a group (column) of chemical elements in the d-block of the periodic table. Members of Group 9 include cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These elements are among the rarest of the transition metals.
Iridium(III) chloride is the inorganic compound with the formula IrCl3. The anhydrous compound is relatively rare, but the related hydrate is much more commonly encountered. The anhydrous salt has two polymorphs, α and β, which are brown and red colored respectively. More commonly encountered is the hygroscopic dark green trihydrate IrCl3(H2O)3 which is a common starting point for iridium chemistry.
Osmiridium and iridosmine are natural alloys of the elements osmium and iridium, with traces of other platinum-group metals.
A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as the gold group and the platinum group. Among the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, silver-mercury amalgam, and gold-mercury amalgam.
The coinage metals comprise those metallic chemical elements and alloys which have been used to mint coins. Historically, most coinage metals are from the three nonradioactive members of group 11 of the periodic table: copper, silver and gold. Copper is usually augmented with tin or other metals to form bronze. Gold, silver and bronze or copper were the principal coinage metals of the ancient world, the medieval period and into the late modern period when the diversity of coinage metals increased. Coins are often made from more than one metal, either using alloys, coatings (cladding/plating) or bimetallic configurations. While coins are primarily made from metal, some non-metallic materials have also been used.
Native element minerals are those elements that occur in nature in uncombined form with a distinct mineral structure. The elemental class includes metals, intermetallic compounds, alloys, metalloids, and nonmetals. The Nickel–Strunz classification system also includes the naturally occurring phosphides, silicides, nitrides, carbides, and arsenides.
A chloride sulfite or sulfite chloride is a chemical compound that contains chloride and sulfite anions (SO32− Cl−). The known compounds of this type are all late transition metal sulfito complexes. Chlorine may be present as a ligand (chloro) or as an ion (chloride). The sulfito ligand can connect to the metal atom by way of an oxygen, or a sulfur atom. It can also link to the metal atom using two oxygen atoms as a bidentate ligand.