Surface-enhanced Raman spectroscopy or surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures such as plasmonic-magnetic silica nanotubes. [1] The enhancement factor can be as much as 1010 to 1011, [2] [3] which means the technique may detect single molecules. [4] [5]
SERS from pyridine adsorbed on electrochemically roughened silver was first observed by Martin Fleischmann, Patrick J. Hendra and A. James McQuillan at the Department of Chemistry at the University of Southampton, UK in 1973. [6] This initial publication has been cited over 6000 times. The 40th Anniversary of the first observation of the SERS effect has been marked by the Royal Society of Chemistry by the award of a National Chemical Landmark plaque to the University of Southampton. In 1977, two groups independently noted that the concentration of scattering species could not account for the enhanced signal and each proposed a mechanism for the observed enhancement. Their theories are still accepted as explaining the SERS effect. Jeanmaire and Richard Van Duyne [7] proposed an electromagnetic effect, while Albrecht and Creighton [8] proposed a charge-transfer effect. Rufus Ritchie, of Oak Ridge National Laboratory's Health Sciences Research Division, predicted the existence of the surface plasmon. [9]
The exact mechanism of the enhancement effect of SERS is still a matter of debate in the literature. [10] There are two primary theories and while their mechanisms differ substantially, distinguishing them experimentally has not been straightforward. The electromagnetic theory proposes the excitation of localized surface plasmons, while the chemical theory proposes the formation of charge-transfer complexes. The chemical theory is based on resonance Raman spectroscopy, [11] in which the frequency coincidence (or resonance) of the incident photon energy and electron transition greatly enhances Raman scattering intensity. Research in 2015 on a more powerful extension of the SERS technique called SLIPSERS (Slippery Liquid-Infused Porous SERS) [12] has further supported the EM theory. [13]
The increase in intensity of the Raman signal for adsorbates on particular surfaces occurs because of an enhancement in the electric field provided by the surface. When the incident light in the experiment strikes the surface, localized surface plasmons are excited. The field enhancement is greatest when the plasmon frequency, ωp, is in resonance with the radiation ( for spherical particles). In order for scattering to occur, the plasmon oscillations must be perpendicular to the surface; if they are in-plane with the surface, no scattering will occur. It is because of this requirement that roughened surfaces or arrangements of nanoparticles are typically employed in SERS experiments as these surfaces provide an area on which these localized collective oscillations can occur. [14] SERS enhancement can occur even when an excited molecule is relatively far apart from the surface which hosts metallic nanoparticles enabling surface plasmon phenomena. [15]
The light incident on the surface can excite a variety of phenomena in the surface, yet the complexity of this situation can be minimized by surfaces with features much smaller than the wavelength of the light, as only the dipolar contribution will be recognized by the system. The dipolar term contributes to the plasmon oscillations, which leads to the enhancement. The SERS effect is so pronounced because the field enhancement occurs twice. First, the field enhancement magnifies the intensity of incident light, which will excite the Raman modes of the molecule being studied, therefore increasing the signal of the Raman scattering. The Raman signal is then further magnified by the surface due to the same mechanism that excited the incident light, resulting in a greater increase in the total output. At each stage the electric field is enhanced as E2, for a total enhancement of E4. [16]
The enhancement is not equal for all frequencies. For those frequencies for which the Raman signal is only slightly shifted from the incident light, both the incident laser light and the Raman signal can be near resonance with the plasmon frequency, leading to the E4 enhancement. When the frequency shift is large, the incident light and the Raman signal cannot both be on resonance with ωp, thus the enhancement at both stages cannot be maximal. [17]
The choice of surface metal is also dictated by the plasmon resonance frequency. Visible and near-infrared radiation (NIR) are used to excite Raman modes. Silver and gold are typical metals for SERS experiments because their plasmon resonance frequencies fall within these wavelength ranges, providing maximal enhancement for visible and NIR light. Copper's absorption spectrum also falls within the range acceptable for SERS experiments. [18] Platinum and palladium nanostructures also display plasmon resonance within visible and NIR frequencies. [19]
Resonance Raman spectroscopy explains the huge enhancement of Raman scattering intensity. Intermolecular and intramolecular charge transfers significantly enhance Raman spectrum peaks. In particular, the enhancement is huge for species adsorbing the metal surface due to the high-intensity charge transfers from the metal surface with wide band to the adsorbing species. [20] This resonance Raman enhancement is dominant in SERS for species on small nanoclusters with considerable band gaps, [20] because surface plasmon appears only in metal surface with near-zero band gaps. This chemical mechanism probably occurs in concert with the electromagnetic mechanism for metal surface. [21] [22]
While SERS can be performed in colloidal solutions, today the most common method for performing SERS measurements is by depositing a liquid sample onto a silicon or glass surface with a nanostructured noble metal surface. While the first experiments were performed on electrochemically roughened silver, [6] now surfaces are often prepared using a distribution of metal nanoparticles on the surface [23] as well as using lithography [24] or porous silicon as a support. [25] [26] Two dimensional silicon nanopillars decorated with silver have also been used to create SERS active substrates. [27] The most common metals used for plasmonic surfaces in visible light SERS are silver and gold; however, aluminium has recently been explored as an alternative plasmonic material, because its plasmon band is in the UV region, contrary to silver and gold. [28] Hence, there is great interest in using aluminium for UV SERS. It has, however, surprisingly also been shown to have a large enhancement in the infrared, which is not fully understood. [29] In the current decade, it has been recognized that the cost of SERS substrates must be reduced in order to become a commonly used analytical chemistry measurement technique. [30] To meet this need, plasmonic paper has experienced widespread attention in the field, with highly sensitive SERS substrates being formed through approaches such as soaking, [31] [32] [33] in-situ synthesis, [34] [35] screen printing [36] and inkjet printing. [37] [38] [39]
The shape and size of the metal nanoparticles strongly affect the strength of the enhancement because these factors influence the ratio of absorption and scattering events. [40] [41] There is an ideal size for these particles, and an ideal surface thickness for each experiment. [42] If concentration and particle size can be tuned better for each experiment this will go a long way in the cost reduction of substrates. Particles that are too large allow the excitation of multipoles, which are nonradiative. As only the dipole transition leads to Raman scattering, the higher-order transitions will cause a decrease in the overall efficiency of the enhancement. Particles that are too small lose their electrical conductance and cannot enhance the field. When the particle size approaches a few atoms, the definition of a plasmon does not hold, as there must be a large collection of electrons to oscillate together. [16] An ideal SERS substrate must possess high uniformity and high field enhancement. Such substrates can be fabricated on a wafer scale and label-free superresolution microscopy has also been demonstrated using the fluctuations of surface enhanced Raman scattering signal on such highly uniform, high-performance plasmonic metasurfaces. [43]
Due to their unique physical and chemical properties, two-dimensional (2D) materials have gained significant attention as alternative substrates for surface-enhanced Raman spectroscopy (SERS). The use of 2D materials as SERS substrates offers several advantages over traditional metal substrates, including high sensitivity, reproducibility, and chemical stability. [44]
Graphene is one of the most widely studied 2D materials for SERS applications. Graphene has a high surface area, high electron mobility, and excellent chemical stability, making it an attractive substrate for SERS. Graphene-based SERS sensors have also been shown to be highly reproducible and stable, making them attractive for real-world applications. [45] In addition to graphene, other 2D materials, especially MXenes, have also been investigated for SERS applications. [46] [47] MXenes have a high surface area, good electrical conductivity, and chemical stability, making them attractive for SERS applications. [46] As a result, MXene-based SERS sensors have been used to detect various analytes, including organic molecules, [48] drugs and their metabolites. [47]
As research and development continue, 2D materials-based SERS sensors will likely be more widely used in various industries, including environmental monitoring, healthcare, and food safety. [49]
SERS substrates are used to detect the presence of low-abundance biomolecules, and can therefore detect proteins in bodily fluids. [50] Early detection of pancreatic cancer biomarkers was accomplished using SERS-based immunoassay approach. [50] A SERS-base multiplex protein biomarker detection platform in a microfluidic chip is used to detect several protein biomarkers to predict the type of disease and critical biomarkers and increase the chance of differentiating diseases with similar biomarkers like pancreatic cancer, ovarian cancer, and pancreatitis. [51] This technology has been utilized to detect urea and blood plasma label free in human serum and may become the next generation in cancer detection and screening. [52] [53]
The ability to analyze the composition of a mixture at a nanoscale makes the use of SERS substrates that are beneficial for environmental analysis, pharmaceuticals, material sciences, art and archaeological research, forensic science, drug and explosives detection, food quality analysis, [54] and single algal cell detection. [55] [56] [57] SERS combined with plasmonic sensing can be used for high-sensitivity quantitative analysis of small molecules in human biofluids, [58] the quantitative detection of biomolecular interaction, [59] the detection of low-level cancer biomarkers via sandwich immunoassay platforms, [60] [61] the label-free characterization of exosomes, [62] and the study of redox processes at a single-molecule level. [63]
SERS is a powerful technique for determining structural information about molecular systems. It has found a wide range of applications in ultra-sensitive chemical sensing and environmental analyses. [64]
A review of the present and future applications of SERS was published in 2020. [65]
The term surface enhanced Raman spectroscopy implies that it provides the same information that traditional Raman spectroscopy does, simply with a greatly enhanced signal. While the spectra of most SERS experiments are similar to the non-surface enhanced spectra, there are often differences in the number of modes present. Additional modes not found in the traditional Raman spectrum can be present in the SERS spectrum, while other modes can disappear. The modes observed in any spectroscopic experiment are dictated by the symmetry of the molecules and are usually summarized by Selection rules. When molecules are adsorbed to a surface, the symmetry of the system can change, slightly modifying the symmetry of the molecule, which can lead to differences in mode selection. [66]
One common way in which selection rules are modified arises from the fact that many molecules that have a center of symmetry lose that feature when adsorbed to a surface. The loss of a center of symmetry eliminates the requirements of the mutual exclusion rule, which dictates that modes can only be either Raman or infrared active. Thus modes that would normally appear only in the infrared spectrum of the free molecule can appear in the SERS spectrum. [14]
A molecule's symmetry can be changed in different ways depending on the orientation in which the molecule is attached to the surface. In some experiments, it is possible to determine the orientation of adsorption to the surface from the SERS spectrum, as different modes will be present depending on how the symmetry is modified. [67]
Remote surface-enhanced Raman spectroscopy (SERS) consists of using metallic nanowaveguides supporting propagating surface plasmon polaritons (SPPs) to perform SERS at a distant location different to the one of the incident laser.
Propagating SPPs supported by nanowires has been used to show the remote excitation. [68] [69] , as well as the remote detection of SERS. [70] A silver nanowire was also used to show remote excitation and detection using graphene as Raman scatterer [71]
Applications
Different plasmonic systems have already been used to show Raman detection of biomolecules in vivo in cells and remote excitation of surface catalytic reactions.
SERS-based immunoassays can be used for detection of low-abundance biomarkers. For example, antibodies and gold particles can be used to quantify proteins in serum with high sensitivity and specificity. [50] [51]
SERS can be used to target specific DNA and RNA sequences using a combination of gold and silver nanoparticles and Raman-active dyes, such as Cy3. Specific single nucleotide polymorphisms (SNP) can be identified using this technique. The gold nanoparticles facilitate the formation of a silver coating on the dye-labelled regions of DNA or RNA, allowing SERS to be performed. This has several potential applications: For example, Cao et al. report that gene sequences for HIV, Ebola, Hepatitis, and Bacillus Anthracis can be uniquely identified using this technique. Each spectrum was specific, which is advantageous over fluorescence detection; some fluorescent markers overlap and interfere with other gene markers. The advantage of this technique to identify gene sequences is that several Raman dyes are commercially available, which could lead to the development of non-overlapping probes for gene detection. [72]
Raman spectroscopy is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.
In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.
Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.
Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is coloured usually either wine red or blue-purple . Due to their optical, electronic, and molecular-recognition properties, gold nanoparticles are the subject of substantial research, with many potential or promised applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, materials science, and biomedicine.
Resonance Raman spectroscopy is a variant of Raman spectroscopy in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. This similarity in energy (resonance) leads to greatly increased intensity of the Raman scattering of certain vibrational modes, compared to ordinary Raman spectroscopy.
Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers SPR is related to the refractive index of the material and even a small change in the refractive index will cause SPR to not be observed. This makes SPR a possible technique for detecting particular substances (analytes) and SPR biosensors have been developed to detect various important biomarkers.
Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface. SPs have lower energy than bulk plasmons which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an electron gas.
A spaser or plasmonic laser is a type of laser which aims to confine light at a subwavelength scale far below Rayleigh's diffraction limit of light, by storing some of the light energy in electron oscillations called surface plasmon polaritons. The phenomenon was first described by David J. Bergman and Mark Stockman in 2003. The word spaser is an acronym for "surface plasmon amplification by stimulated emission of radiation". The first such devices were announced in 2009 by three groups: a 44-nanometer-diameter nanoparticle with a gold core surrounded by a dyed silica gain medium created by researchers from Purdue, Norfolk State and Cornell universities, a nanowire on a silver screen by a Berkeley group, and a semiconductor layer of 90 nm surrounded by silver pumped electrically by groups at the Eindhoven University of Technology and at Arizona State University. While the Purdue-Norfolk State-Cornell team demonstrated the confined plasmonic mode, the Berkeley team and the Eindhoven-Arizona State team demonstrated lasing in the so-called plasmonic gap mode. In 2018, a team from Northwestern University demonstrated a tunable nanolaser that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism.
Plasmonic nanolithography is a nanolithographic process that utilizes surface plasmon excitations such as surface plasmon polaritons (SPPs) to fabricate nanoscale structures. SPPs, which are surface waves that propagate in between planar dielectric-metal layers in the optical regime, can bypass the diffraction limit on the optical resolution that acts as a bottleneck for conventional photolithography.
A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.
The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy. This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously.
Plasmonic nanoparticles are particles whose electron density can couple with electromagnetic radiation of wavelengths that are far larger than the particle due to the nature of the dielectric-metal interface between the medium and the particles: unlike in a pure metal where there is a maximum limit on what size wavelength can be effectively coupled based on the material size.
A localized surface plasmon (LSP) is the result of the confinement of a surface plasmon in a nanoparticle of size comparable to or smaller than the wavelength of light used to excite the plasmon. When a small spherical metallic nanoparticle is irradiated by light, the oscillating electric field causes the conduction electrons to oscillate coherently. When the electron cloud is displaced relative to its original position, a restoring force arises from Coulombic attraction between electrons and nuclei. This force causes the electron cloud to oscillate. The oscillation frequency is determined by the density of electrons, the effective electron mass, and the size and shape of the charge distribution. The LSP has two important effects: electric fields near the particle's surface are greatly enhanced and the particle's optical absorption has a maximum at the plasmon resonant frequency. Surface plasmon resonance can also be tuned based on the shape of the nanoparticle. The plasmon frequency can be related to the metal dielectric constant. The enhancement falls off quickly with distance from the surface and, for noble metal nanoparticles, the resonance occurs at visible wavelengths. Localized surface plasmon resonance creates brilliant colors in metal colloidal solutions.
Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS) that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible via TERS, with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions, or better at ultralow temperatures and high pressure.
Surface plasmon resonance microscopy (SPRM), also called surface plasmon resonance imaging (SPRI), is a label free analytical tool that combines the surface plasmon resonance of metallic surfaces with imaging of the metallic surface. The heterogeneity of the refractive index of the metallic surface imparts high contrast images, caused by the shift in the resonance angle. SPRM can achieve a sub-nanometer thickness sensitivity and lateral resolution achieves values of micrometer scale. SPRM is used to characterize surfaces such as self-assembled monolayers, multilayer films, metal nanoparticles, oligonucleotide arrays, and binding and reduction reactions. Surface plasmon polaritons are surface electromagnetic waves coupled to oscillating free electrons of a metallic surface that propagate along a metal/dielectric interface. Since polaritons are highly sensitive to small changes in the refractive index of the metallic material, it can be used as a biosensing tool that does not require labeling. SPRM measurements can be made in real-time, such as measuring binding kinetics of membrane proteins in single cells, or DNA hybridization.
Christa L. Brosseau is a Canadian chemist, currently a Canada Research Chair at Saint Mary's University (Halifax). Brosseau's research focus is on Electrochemical Surface-Enhanced Raman Spectroscopy.
Plasmon coupling is a phenomenon that occurs when two or more plasmonic particles approach each other to a distance below approximately one diameter's length. Upon the occurrence of plasmon coupling, the resonance of individual particles start to hybridize, and their resonance spectrum peak wavelength will shift, depending on how surface charge density distributes over the coupled particles. At a single particle's resonance wavelength, the surface charge densities of close particles can either be out of phase or in phase, causing repulsion or attraction and thus leading to increase (blueshift) or decrease (redshift) of hybridized mode energy. The magnitude of the shift, which can be the measure of plasmon coupling, is dependent on the interparticle gap as well as particles geometry and plasmonic resonances supported by individual particles. A larger redshift is usually associated with smaller interparticle gap and larger cluster size.
Raman spectroelectrochemistry (Raman-SEC) is a technique that studies the inelastic scattering or Raman scattering of monochromatic light related to chemical compounds involved in an electrode process. This technique provides information about vibrational energy transitions of molecules, using a monochromatic light source, usually from a laser that belongs to the UV, Vis or NIR region. Raman spectroelectrochemistry provides specific information about structural changes, composition and orientation of the molecules on the electrode surface involved in an electrochemical reaction, being the Raman spectra registered a real fingerprint of the compounds.
Janina Kneipp is a German scientist who is Professor of Physical Chemistry Humboldt University of Berlin. Her research considers surface enhanced Raman scattering and plasmonic enhancement in multi-modal micro spectroscopy.
Katrin Kneipp is a German physicist.