Cyanines, also referred to as tetramethylindo(di)-carbocyanines [1] are a synthetic dye family belonging to the polymethine group. Although the name derives etymologically from terms for shades of blue, the cyanine family covers the electromagnetic spectrum from near IR to UV.
Chemically, cyanines are a conjugated system between two nitrogen atoms; in each resonance structure, exactly one nitrogen atom is oxidized to an iminium. Typically, they form part of a nitrogenous heterocyclic system. [2]
The main application for cyanine dyes is in biological labeling. Nevertheless, there is a wide literature on both their synthesis and uses, and cyanines are common in some CD and DVD media.
Cyanines have been classified in many ways: [3]
Additionally, these classes are recognized: [4]
where two quaternary nitrogens are joined by a polymethine chain. [5] Both nitrogens may each be independently part of a heteroaromatic moiety, such as pyrrole, imidazole, thiazole, pyridine, quinoline, indole, benzothiazole, etc.
Cyanines were first synthesized over a century ago. They were originally used, and still are, to increase the sensitivity range of photographic emulsions, i.e., to increase the range of wavelengths which will form an image on the film, making the film panchromatic. [4] Cyanines are also used in CD-R and DVD-R media. The ones used are mostly green or light blue colour, and are chemically unstable. For that reason, unstabilized cyanine discs are unsuitable for archival CD and DVD use. Recent cyanine discs contain stabilizers, typically a metal atom bonded to the cyanine molecule, [6] that slow the deterioration significantly. These discs are often rated with an archival life of 75 years or more. The other dyes used in CD-Rs are phthalocyanine and azo.
For applications to biotechnology, special cyanine dyes are synthesized from 2, 3, 5 or 7-methine structures with reactive groups on either one or both of the nitrogen ends so that they can be chemically linked to either nucleic acids or protein molecules. Labeling is done for visualization and quantification purposes. Biological applications include comparative genomic hybridization and gene chips, which are used in transcriptomics, and various studies in proteomics such as RNA localization, [7] molecular interaction studies by fluorescence resonance energy transfer (FRET) and fluorescent immunoassays.
Cyanine dyes are available with different modifications such as methyl, ethyl or butyl substituents, carboxyl, acetylmethoxy, and sulfo groups which alter their hydrophilicity. [8]
Probe | Ex (nm) | Em (nm) | MW | Quantum yield |
---|---|---|---|---|
Cy2 | 489 | 506 | 714 | QY 0.12 |
Cy3 | (512);550 | 570;(615) | 767 | QY 0.15 [9] * |
Cy3B | 558 | 572;(620) | 658 | QY 0.67 |
Cy3.5 | 581 | 594;(640) | 1102 | QY 0.15 |
Cy5 | (625);650 | 670 | 792 | QY 0.27 [9] |
Cy5.5 | 675 | 694 | 1128 | QY 0.28 [10] |
Cy7 | 743 | 767 | 818 | QY 0.28 |
Ex (nm): Excitation wavelength in nanometers
Em (nm): Emission wavelength in nanometers
MW: Molecular weight
QY: Quantum yield
* Depends strongly on viscosity, temperature, and biomolecular interactions. [11]
Because they yield brighter and more stable fluorescence, cyanines can advantageously replace conventional dyes such as fluorescein and rhodamines.
Cy3 fluoresces greenish yellow (~550 nm excitation, ~570 nm emission), while Cy5 is fluorescent in the far-red region (~650 excitation, 670 nm emission). [12] Cy3 can be detected by various fluorometers, imagers, and microscopes with standard filters for Tetramethylrhodamine (TRITC). Due to its high molar extinction coefficient, this dye is also easily detected by naked eye on electrophoresis gels, and in solution. Cy5 became a popular replacement for far red fluorescent dyes because of its high extinction coefficient (as small as 1 nanomol can be detected in gel electrophoresis by naked eye) and its fluorophore emission maximum in the red region, where many CCD detectors have maximum sensitivity and biological objects give low background interference.
The scanners actually use diverse laser emission wavelengths (typically 532 nm and 635 nm) and filter wavelengths (550-600 nm and 655-695 nm) to avoid background contamination. They are thus able to easily distinguish colors from Cy3 and from Cy5, and also able to quantify the amount of Cy3 and Cy5 labeling in one sample (multiparametric detection).
Cy3.5 can replace sulfoRhodamine 101.
Cy5.5 is a near-infrared (IR) fluorescence-emitting dye (excitation/emission maximum 678/694 nm).
Cy7 is a near-IR fluor that is invisible to the naked eye (excitation/emission maximum 750/776 nm). It is used in in vivo imaging applications, as well as the Cy7.5 dye.
Sulfo–Cyanine dyes bear one or two sulfo groups, rendering the Cy dye water-soluble, but tri- and quadri-sulfonated forms are available for even higher water solubility. [8] PEGylation is another modification that confers hydrophilicity, not only to the dye but also to the labeled conjugate.
The Cy3 and Cy5 nomenclature was first proposed by Ernst, et al. [5] in 1989, and is non-standard since it gives no hint of their chemical structures. In the original paper the number designated the count of the methines (as shown), and the side chains were unspecified. Due to this ambiguity various structures are designated Cy3 and Cy5 in the literature. The R groups do not have to be identical. In the dyes as used they are short aliphatic chains one or both of which ends in a highly reactive moiety such as N-hydroxysuccinimide or maleimide.
Many analogs of standard Cy 2 / 3 / 3.5 / 5 / 5.5 / 7 / 7.5 dyes were developed, using diverse modification: Alexa Fluor dyes, Dylight, FluoProbes dyes, Sulfo Cy dyes, [13] Seta dyes, [14] IRIS dyes from Cyanine Technologies [15] and others can be used interchangeably with Cy dyes in most biochemical applications, with claimed improvements in solubility, fluorescence, or photostability. [16] [17]
While patent protection for the standard Cy series of dyes has lapsed, the trademarked Cy naming remains in place. Consequently, dyes that are identical to Cy dyes, but called different names, are now sold.
Cyanine dyes are used to label proteins, antibodies, peptides, nucleic acid probes, and any kind of other biomolecules to be used in a variety of fluorescence detection techniques: Flow cytometry, Microscopy (mainly Visible range, but also UV, IR), Microplate assays, Microarrays, as well as "light-up Probes," and in vivo imaging. [18]
In microarray experiments DNA or RNA is labeled with either Cy3 or Cy5 that has been synthesized to carry an N-hydroxysuccinimidyl ester (NHS-ester) reactive group. Since NHS-esters react readily only with aliphatic amine groups, which nucleic acids lack, nucleotides have to be modified with aminoallyl groups. This is done through incorporating aminoallyl-modified nucleotides during synthesis reactions. A good ratio is a label every 60 bases such that the labels are not too close to each other, which would result in quenching effects.
For protein labeling, Cy3 and Cy5 dyes sometimes bear a succinimidyl group to react with amines, or a maleimide group to react with a sulfhydryl group of cysteine residues.
Cy5 is sensitive to its electronic environment. Changes in the conformation of the protein it is attached to will produce either enhancement or quenching of the emission. The rate of this change can be measured to determine enzyme kinetic parameters. The dyes can be used for similar purposes in FRET experiments.
Cy3 and Cy5 are used in proteomics experiments so that samples from two sources can be mixed and run together through the separation process. [19] [20] This eliminates variations due to differing experimental conditions that are inevitable if the samples were run separately. These variations make it extremely difficult, if not impossible, to use computers to automate the acquisition of the data after the separation is complete. Using these dyes makes the automation trivial.
The word cyanin is from the English word "cyan", which conventionally means a shade of blue-green (close to "aqua") and is derived from the Greek κυάνεος/κυανοῦςkyaneos/kyanous which means a somewhat different color: "dark blue".
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.
Fluorescence spectroscopy is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy. In the special case of single molecule fluorescence spectroscopy, intensity fluctuations from the emitted light are measured from either single fluorophores, or pairs of fluorophores.
A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.
Nile blue is a stain used in biology and histology. It may be used with live or fixed cells, and imparts a blue colour to cell nuclei.
Nile red is a lipophilic stain. Nile red stains intracellular lipid droplets yellow. In most polar solvents, Nile red will not fluoresce; however, when in a lipid-rich environment, it can be intensely fluorescent, with varying colors from deep red to strong yellow-gold emission. The dye is highly solvatochromic and its emission and excitation wavelength both shift depending on solvent polarity and in polar media will hardly fluoresce at all.
Phycobilisomes are light harvesting antennae of photosystem II in cyanobacteria, red algae and glaucophytes. It was lost in the plastids of green algae / plants (chloroplasts).
Acridine orange is an organic compound that serves as a nucleic acid-selective fluorescent dye with cationic properties useful for cell cycle determination. Acridine orange is cell-permeable, which allows the dye to interact with DNA by intercalation, or RNA via electrostatic attractions. When bound to DNA, acridine orange is very similar spectrally to an organic compound known as fluorescein. Acridine orange and fluorescein have a maximum excitation at 502nm and 525 nm (green). When acridine orange associates with RNA, the fluorescent dye experiences a maximum excitation shift from 525 nm (green) to 460 nm (blue). The shift in maximum excitation also produces a maximum emission of 650 nm (red). Acridine orange is able to withstand low pH environments, allowing the fluorescent dye to penetrate acidic organelles such as lysosomes and phagolysosomes that are membrane-bound organelles essential for acid hydrolysis or for producing products of phagocytosis of apoptotic cells. Acridine orange is used in epifluorescence microscopy and flow cytometry. The ability to penetrate the cell membranes of acidic organelles and cationic properties of acridine orange allows the dye to differentiate between various types of cells. The shift in maximum excitation and emission wavelengths provides a foundation to predict the wavelength at which the cells will stain.
Squaraine dyes are a class of organic dyes showing intense fluorescence, typically in the red and near infrared region. They are characterized by their unique aromatic four membered ring system derived from squaric acid. Most squaraines are encumbered by nucleophilic attack of the central four membered ring, which is highly electron deficient. This encumbrance can be attenuated by the formation of a rotaxane around the dye to protect it from nucleophiles. They are currently used as sensors for ions and have recently, with the advent of protected squaraine derivatives, been exploited in biomedical imaging.
The DyLight Fluor family of fluorescent dyes are produced by Dyomics in collaboration with Thermo Fisher Scientific. DyLight dyes are typically used in biotechnology and research applications as biomolecule, cell and tissue labels for fluorescence microscopy, cell biology or molecular biology.
BODIPY is the technical common name of a chemical compound with formula C
9H
7BN
2F
2, whose molecule consists of a boron difluoride group BF
2 joined to a dipyrromethene group C
9H
7N
2; specifically, the compound 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene in the IUPAC nomenclature. The common name is an abbreviation for "boron-dipyrromethene". It is a red crystalline solid, stable at ambient temperature, soluble in methanol.
Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence. Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.
The FluoProbes series of fluorescent dyes were developed by Interchim to improve performances of standard fluorophores. They are designed for labeling biomolecules, cells, tissues or beads in advanced fluorescent detection techniques.
Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field or on the far-field. Among techniques that rely on the latter are those that improve the resolution only modestly beyond the diffraction-limit, such as confocal microscopy with closed pinhole or aided by computational methods such as deconvolution or detector-based pixel reassignment, the 4Pi microscope, and structured-illumination microscopy technologies such as SIM and SMI.
Photo-activated localization microscopy and stochastic optical reconstruction microscopy (STORM) are widefield fluorescence microscopy imaging methods that allow obtaining images with a resolution beyond the diffraction limit. The methods were proposed in 2006 in the wake of a general emergence of optical super-resolution microscopy methods, and were featured as Methods of the Year for 2008 by the Nature Methods journal. The development of PALM as a targeted biophysical imaging method was largely prompted by the discovery of new species and the engineering of mutants of fluorescent proteins displaying a controllable photochromism, such as photo-activatible GFP. However, the concomitant development of STORM, sharing the same fundamental principle, originally made use of paired cyanine dyes. One molecule of the pair, when excited near its absorption maximum, serves to reactivate the other molecule to the fluorescent state.
YOYO-1 is a green fluorescent dye used in DNA staining. It belongs to the family of monomethine cyanine dyes and is a tetracationic homodimer of Oxazole Yellow, typically available as tetraiodide salt. In aqueous buffer, free YOYO-1 dye has very low fluorescence quantum yield. However, the intensity of fluorescence increases 3200 times upon binding through bis-intercalation to double-stranded DNA.
Pacific Blue, or systematically 3-carboxy-6,8-difluoro-7-hydroxycoumarin, is a fluorophore used in cell biology. Its excitation maximum lies at 401 nm, while its emission maximum is at 452 nm. In contrast to the less acidic 7-hydroxy-3-carboxycoumarin (pKa=7.0), the high acidity of the phenol of Pacific Blue (pKa=3.7) causes its fluorescence to remain very high at neutral pH.
Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy, imaging probes, and spectroscopy.
3-(2-furoyl)-quinoline-2-carboxaldehyde (FQ) is a fluorogenic amine labeling dye that is not fluorescent itself, but reacts with primary amines to form fluorescent products. It was first reported in 1990. Cyanide, typically provided via KCN or NaCN salts, is a required co-substrate in the fluorogenic reaction. It has been used for the detection of amines and peptides, largely in CE-SDS, where it is recognized to reach a silver stain-like high sensitivity via laser-induced fluorescence. Once bound to protein the excitation wavelength is 480 nm (blue) and the emission wavelength is ~600 nm (orange).
3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA) is a fluorogenic amine labeling dye that is not fluorescent itself, but covalently reacts with primary amines to form fluorescent products. It was first reported in 1991. Today, it is largely used in the context of quantifying peptides or proteins. Either cyanide or thiols are required as a co-substrate in the fluorogenic reaction, although thiols also react with & mask the CBQCA aldehyde thereby preventing the fluorogenic reaction against the targeted primary amines. Once bound to protein the excitation wavelength is 465 nm (blue) and the emission wavelength is ~550 nm (green).
Pyrylium-1 (Py-1) is a fluorogenic pyrylium & tetrafluoroborate salt and amine-labeling dye that is not fluorescent itself, but reacts with primary amines to form fluorescent products. It is within the "chameleon labels" class, so named due to their clear color-changing properties upon conjugation. Py-1 was first reported in 2004. It has been used for the detection of amines and peptides, largely in CE-SDS, where it is recognized to reach a high sensitivity via laser-induced fluorescence. Once bound to protein the excitation wavelength is 503 nm (green) and the emission wavelength is 603 nm (orange). Similar to FQ, these fluorescence wavelengths makes Py-1 suitable for excitation with a 488 nm argon-ion laser.