PEGylation

Last updated
Polyethylene glycol Poly(ethylene glycol) alternate.svg
Polyethylene glycol

PEGylation (or pegylation) is the process of both covalent and non-covalent attachment or amalgamation of polyethylene glycol (PEG, in pharmacy called macrogol) polymer chains to molecules and macrostructures, such as a drug, therapeutic protein or vesicle, which is then described as PEGylated. [1] [2] [3] [4] PEGylation affects the resulting derivatives or aggregates interactions, which typically slows down their coalescence and degradation as well as elimination in vivo. [5] [6]

Contents

PEGylation is routinely achieved by the incubation of a reactive derivative of PEG with the target molecule. The covalent attachment of PEG to a drug or therapeutic protein can "mask" the agent from the host's immune system (reducing immunogenicity and antigenicity), and increase its hydrodynamic size (size in solution), which prolongs its circulatory time by reducing renal clearance. PEGylation can also provide water solubility to hydrophobic drugs and proteins. Having proven its pharmacological advantages and acceptability, PEGylation technology is the foundation of a growing multibillion-dollar industry. [7]

Methodology

A comparison of uricase and PEG-uricase; PEG-uricase includes 40 polymers of 10kDa PEG. PEGylation improves its solubility at physiological pH, increases serum half-life and reduces immunogenicity without compromising activity. Upper images show the whole tetramer, lower images show one of the lysines that is PEGylated. (uricase from PDB: 1uox and PEG-uricase model from reference; only 36 PEG polymers included) PegUricase.png
A comparison of uricase and PEG-uricase; PEG-uricase includes 40 polymers of 10kDa PEG. PEGylation improves its solubility at physiological pH, increases serum half-life and reduces immunogenicity without compromising activity. Upper images show the whole tetramer, lower images show one of the lysines that is PEGylated. (uricase from PDB: 1uox and PEG-uricase model from reference; only 36 PEG polymers included)

PEGylation is the process of attaching the strands of the polymer PEG to molecules, most typically peptides, proteins, and antibody fragments, that can improve the safety and efficiency of many therapeutics. [9] [10] It produces alterations in the physiochemical properties including changes in conformation, electrostatic binding, hydrophobicity etc. These physical and chemical changes increase systemic retention of the therapeutic agent. Also, it can influence the binding affinity of the therapeutic moiety to the cell receptors and can alter the absorption and distribution patterns.

PEGylation, by increasing the molecular weight of a molecule, can impart several significant pharmacological advantages over the unmodified form, such as improved drug solubility, reduced dosage frequency with potentially reduced toxicity and without diminished efficacy, extended circulating life, increased drug stability, and enhanced protection from proteolytic degradation; PEGylated forms may also be eligible for patent protection. [11]

PEGylated drugs

The attachment of an inert and hydrophilic polymer was first reported around 1970 to extend blood life and control immunogenicity of proteins. [12] Polyethylene glycol was chosen as the polymer. [13] [14] In 1981 Davis and Abuchowski founded Enzon, Inc., which brought three PEGylated drugs to market. Abuchowski later founded and is CEO of Prolong Pharmaceuticals. [15]

The clinical value of PEGylation is now well established. ADAGEN (pegademase bovine) manufactured by Enzon Pharmaceuticals, Inc., US was the first PEGylated protein approved by the U.S. Food and Drug Administration (FDA) in March 1990, to enter the market. It is used to treat a form of severe combined immunodeficiency syndrome (ADA-SCID), as an alternative to bone marrow transplantation and enzyme replacement by gene therapy. Since the introduction of ADAGEN, a large number of PEGylated protein and peptide pharmaceuticals have followed and many others are under clinical trial or under development stages. Sales of the two most successful products, Pegasys and Neulasta, exceeded $5 billion in 2011. [16] [17] All commercially available PEGylated pharmaceuticals contain methoxypoly(ethylene glycol) or mPEG. PEGylated pharmaceuticals on the market (in reverse chronology by FDA approval year) have included: [18]

Patent litigation

The PEGylated lipid nanoparticle drug delivery (LNP) system of the mRNA vaccine known as mRNA-1273 has been the subject of ongoing patent litigation with Arbutus Biopharma, from whom Moderna had previously licensed LNP technology. [25] [26] On 4 September 2020, Nature Biotechnology reported that Moderna had lost a key challenge in the ongoing case. [27]

Use in research

PEGylation has practical uses in biotechnology for protein delivery, [28] cell transfection, and gene editing in non-human cells. [29]

Process

The first step of the PEGylation is the suitable functionalization of the PEG polymer at one or both ends. PEGs that are activated at each end with the same reactive moiety are known as "homobifunctional", whereas if the functional groups present are different, then the PEG derivative is referred as "heterobifunctional" or "heterofunctional". The chemically active or activated derivatives of the PEG polymer are prepared to attach the PEG to the desired molecule. [30]

The overall PEGylation processes used to date for protein conjugation can be broadly classified into two types, namely a solution phase batch process and an on-column fed-batch process. [31] The simple and commonly adopted batch process involves the mixing of reagents together in a suitable buffer solution, preferably at a temperature between 4 and 6 °C, followed by the separation and purification of the desired product using a suitable technique based on its physicochemical properties, including size exclusion chromatography (SEC), ion exchange chromatography (IEX), hydrophobic interaction chromatography (HIC) and membranes or aqueous two-phase systems (ATPS). [32] [33]

The choice of the suitable functional group for the PEG derivative is based on the type of available reactive group on the molecule that will be coupled to the PEG. For proteins, typical reactive amino acids include lysine, cysteine, histidine, arginine, aspartic acid, glutamic acid, serine, threonine and tyrosine. The N-terminal amino group and the C-terminal carboxylic acid can also be used as a site specific site by conjugation with aldehyde functional polymers. [34]

The techniques used to form first generation PEG derivatives are generally reacting the PEG polymer with a group that is reactive with hydroxyl groups, typically anhydrides, acid chlorides, chloroformates and carbonates. In the second generation PEGylation chemistry more efficient functional groups such as aldehyde, esters, amides etc. are made available for conjugation.

As applications of PEGylation have become more and more advanced and sophisticated, there has been an increase in need for heterobifunctional PEGs for conjugation. These heterobifunctional PEGs are very useful in linking two entities, where a hydrophilic, flexible and biocompatible spacer is needed. Preferred end groups for heterobifunctional PEGs are maleimide, vinyl sulfones, pyridyl disulfide, amine, carboxylic acids and NHS esters. [35] [36] [37]

Third-generation pegylation agents, where the polymer has been branched, Y-shaped or comb-shaped are available and show reduced viscosity and lack of organ accumulation. [38] Recently also enzymatic approaches of PEGylation have been developed, thus further expanding the conjugation tools. [39] [40] PEG-protein conjugates obtained by enzymatic methods are already in clinical use, for example: Lipegfilgrastim, Rebinyn, Esperoct.

Limitations

Unpredictability in clearance times for PEGylated compounds may lead to the accumulation of large-molecular-weight compounds in the liver leading to inclusion bodies with no known toxicologic consequences. [41] Furthermore, alteration in the chain length may lead to unexpected clearance times in vivo. [42] Moreover, the experimental conditions of PEGylation reaction (i.e. pH, temperature, reaction time, overall cost of the process and molar ratio between PEG derivative and peptide) also have an impact on the stability of the final PEGylated products. [43] To overcome the above-mentioned limitations different strategies such as changing the size (Mw), the number, the location and the type of linkage of PEG molecule were offered by several researchers. [44] [45] Conjugation to biodegradable polysaccharides, which is a promising alternative to PEGylation, is another way to solve the biodegradability issue of PEG. [46]

See also

Related Research Articles

<span class="mw-page-title-main">Polyethylene glycol</span> Chemical compound

Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG is commonly expressed as H−(O−CH2−CH2)n−OH.

<span class="mw-page-title-main">Liposome</span> Composite structures made of phospholipids and may contain small amounts of other molecules

A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug delivery vehicles for administration of pharmaceutical drugs and nutrients, such as lipid nanoparticles in mRNA vaccines, and DNA vaccines. Liposomes can be prepared by disrupting biological membranes.

<span class="mw-page-title-main">Dendrimer</span> Highly ordered, branched polymeric molecule

Dendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a spherical three-dimensional morphology. The word dendron is also encountered frequently. A dendron usually contains a single chemically addressable group called the focal point or core. The difference between dendrons and dendrimers is illustrated in the top figure, but the terms are typically encountered interchangeably.

In biotechnology, polymersomes are a class of artificial vesicles, tiny hollow spheres that enclose a solution. Polymersomes are made using amphiphilic synthetic block copolymers to form the vesicle membrane, and have radii ranging from 50 nm to 5 µm or more. Most reported polymersomes contain an aqueous solution in their core and are useful for encapsulating and protecting sensitive molecules, such as drugs, enzymes, other proteins and peptides, and DNA and RNA fragments. The polymersome membrane provides a physical barrier that isolates the encapsulated material from external materials, such as those found in biological systems.

<span class="mw-page-title-main">Maleimide</span> Chemical compound

Maleimide is a chemical compound with the formula H2C2(CO)2NH (see diagram). This unsaturated imide is an important building block in organic synthesis. The name is a contraction of maleic acid and imide, the -C(O)NHC(O)- functional group. Maleimides also describes a class of derivatives of the parent maleimide where the NH group is replaced with alkyl or aryl groups such as a methyl or phenyl, respectively. The substituent can also be a small molecule (such as biotin, a fluorescent dye, an oligosaccharide, or a nucleic acid), a reactive group, or a synthetic polymer such as polyethylene glycol. Human hemoglobin chemically modified with maleimide-polyethylene glycol is a blood substitute called MP4.

<span class="mw-page-title-main">Cationic liposome</span>

Cationic liposomes are spherical structures that contain positively charged lipids. Cationic liposomes can vary in size between 40 nm and 500 nm, and they can either have one lipid bilayer (monolamellar) or multiple lipid bilayers (multilamellar). The positive charge of the phospholipids allows cationic liposomes to form complexes with negatively charged nucleic acids through ionic interactions. Upon interacting with nucleic acids, cationic liposomes form clusters of aggregated vesicles. These interactions allow cationic liposomes to condense and encapsulate various therapeutic and diagnostic agents in their aqueous compartment or in their lipid bilayer. These cationic liposome-nucleic acid complexes are also referred to as lipoplexes. Due to the overall positive charge of cationic liposomes, they interact with negatively charged cell membranes more readily than classic liposomes. This positive charge can also create some issues in vivo, such as binding to plasma proteins in the bloodstream, which leads to opsonization. These issues can be reduced by optimizing the physical and chemical properties of cationic liposomes through their lipid composition. Cationic liposomes are increasingly being researched for use as delivery vectors in gene therapy due to their capability to efficiently transfect cells. A common application for cationic liposomes is cancer drug delivery.

Targeted drug delivery, sometimes called smart drug delivery, is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form. The advantages to the targeted release system is the reduction in the frequency of the dosages taken by the patient, having a more uniform effect of the drug, reduction of drug side-effects, and reduced fluctuation in circulating drug levels. The disadvantage of the system is high cost, which makes productivity more difficult, and the reduced ability to adjust the dosages.

<span class="mw-page-title-main">Macrogol</span> Medication for constipation, classified as an osmotic laxative

Macrogol, also known as polyethylene glycol (PEG), is used as a medication to treat constipation in children and adults. It is taken by mouth. Benefits usually occur within three days. Generally it is only recommended for up to two weeks. It is also used as an excipient. It is also used to clear the bowels before a colonoscopy, when the onset of the laxative effect is more rapid, typically within an hour.

Pegol is a term used in generic names for pharmaceutical drugs to indicate the presence of a polyethylene glycol attachment (pegylation). The term is used for monoclonal antibodies and engineered proteins as well as for small molecules. The purpose of the pegylation is to extend the half-life of the drug.

<span class="mw-page-title-main">Solid lipid nanoparticle</span> Novel drug delivery system

Lipid nanoparticles (LNPs) are nanoparticles composed of lipids. They are a novel pharmaceutical drug delivery system, and a novel pharmaceutical formulation. LNPs as a drug delivery vehicle were first approved in 2018 for the siRNA drug Onpattro. LNPs became more widely known in late 2020, as some COVID-19 vaccines that use RNA vaccine technology coat the fragile mRNA strands with PEGylated lipid nanoparticles as their delivery vehicle.

<span class="mw-page-title-main">Naloxegol</span> Medication used in the treatment for Opioid-Induced Constipation

Naloxegol is a peripherally acting μ-opioid receptor antagonist developed by AstraZeneca, licensed from Nektar Therapeutics, for the treatment of opioid-induced constipation. It was approved in 2014 in adult patients with chronic, non-cancer pain. Doses of 25 mg were found safe and well tolerated for 52 weeks. When given concomitantly with opioid analgesics, naloxegol reduced constipation-related side effects, while maintaining comparable levels of analgesia.

Polymer-drug conjugates are nano-medicine products under development for cancer diagnosis and treatment. There are more than 10 anticancer conjugates in clinical development. Polymer-drug conjugates are drug molecules held in polymer molecules, which act as the delivery system for the drug. Polymer drugs have passed multidrug resistance (MDR) testing and hence may become a viable treatment for endocrine-related cancers. A cocktail of pendant drugs could be delivered by water-soluble polymer platforms. The physical and chemical properties of the polymers used in polymer-drug conjugates are specially synthesized to flow through the kidneys and liver without being filtered out, allowing the drugs to be used more effectively. Traditional polymers used in polymer-drug conjugates can be degraded through enzymatic activity and acidity. Polymers are now being synthesized to be sensitive to specific enzymes that are apparent in diseased tissue. The drugs remain attached to the polymer and are not activated until the enzymes associated with the diseased tissue are present. This process significantly minimizes damage to healthy tissue.

Nanoparticles for drug delivery to the brain is a method for transporting drug molecules across the blood–brain barrier (BBB) using nanoparticles. These drugs cross the BBB and deliver pharmaceuticals to the brain for therapeutic treatment of neurological disorders. These disorders include Parkinson's disease, Alzheimer's disease, schizophrenia, depression, and brain tumors. Part of the difficulty in finding cures for these central nervous system (CNS) disorders is that there is yet no truly efficient delivery method for drugs to cross the BBB. Antibiotics, antineoplastic agents, and a variety of CNS-active drugs, especially neuropeptides, are a few examples of molecules that cannot pass the BBB alone. With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other organs and disrupting their function. Further, the BBB is not the only physiological barrier for drug delivery to the brain. Other biological factors influence how drugs are transported throughout the body and how they target specific locations for action. Some of these pathophysiological factors include blood flow alterations, edema and increased intracranial pressure, metabolic perturbations, and altered gene expression and protein synthesis. Though there exist many obstacles that make developing a robust delivery system difficult, nanoparticles provide a promising mechanism for drug transport to the CNS.

Enzon Pharmaceuticals, Inc is a pharmaceutical company engaged in developing therapeutics to patients whose needs are unmet. Its headquarters is now in Piscataway, New Jersey. The company is a publicly traded company on NASDAQ under the symbol "ENZN". It's also doing marketing works in Asia areas such as China. In 2012, the company orally presented in Nanjing, China about the symposium of its drug delivery systems, which help improve therapeutic molecules' pharmaceutical properties.

Nanoparticle drug delivery systems are engineered technologies that use nanoparticles for the targeted delivery and controlled release of therapeutic agents. The modern form of a drug delivery system should minimize side-effects and reduce both dosage and dosage frequency. Recently, nanoparticles have aroused attention due to their potential application for effective drug delivery.

<span class="mw-page-title-main">Polymer-protein hybrid</span> Nanostructures of protein-polymer conjugates

Polymer-protein hybrids are a class of nanostructure composed of protein-polymer conjugates. The protein component generally gives the advantages of biocompatibility and biodegradability, as many proteins are produced naturally by the body and are therefore well tolerated and metabolized. Although proteins are used as targeted therapy drugs, the main limitations—the lack of stability and insufficient circulation times still remain. Therefore, protein-polymer conjugates have been investigated to further enhance pharmacologic behavior and stability. By adjusting the chemical structure of the protein-polymer conjugates, polymer-protein particles with unique structures and functions, such as stimulus responsiveness, enrichment in specific tissue types, and enzyme activity, can be synthesized. Polymer-protein particles have been the focus of much research recently because they possess potential uses including bioseparations, imaging, biosensing, gene and drug delivery.

Lysozyme PEGylation is the covalent attachment of Polyethylene glycol (PEG) to Lysozyme, which is one of the most widely investigated PEGylated proteins.

Peptide therapeutics are peptides or polypeptides which are used to for the treatment of diseases. Naturally occurring peptides may serve as hormones, growth factors, neurotransmitters, ion channel ligands, and anti-infectives; peptide therapeutics mimic such functions. Peptide Therapeutics are seen as relatively safe and well-tolerated as peptides can be metabolized by the body.

Polysaccharide–protein conjugates may have better solubility and stability, reduced immunogenicity, prolonged circulation time, and enhanced targeting ability compared to native protein. They are promising alternatives to PEG–protein drugs, in which non-biodegradable high molecular weight PEG causes health concerns.

pH-responsive tumor-targeted drug delivery is a specialized form of targeted drug delivery that utilizes nanoparticles to deliver therapeutic drugs directly to cancerous tumor tissue while minimizing its interaction with healthy tissue. Scientists have used drug delivery as a way to modify the pharmacokinetics and targeted action of a drug by combining it with various excipients, drug carriers, and medical devices. These drug delivery systems have been created to react to the pH environment of diseased or cancerous tissues, triggering structural and chemical changes within the drug delivery system. This form of targeted drug delivery is to localize drug delivery, prolongs the drug's effect, and protect the drug from being broken down or eliminated by the body before it reaches the tumor.

References

  1. Jokerst, Jesse V; Lobovkina, Tatsiana; Zare, Richard N; Gambhir, Sanjiv S (June 2011). "Nanoparticle PEGylation for imaging and therapy". Nanomedicine. 6 (4): 715–728. doi:10.2217/nnm.11.19. PMC   3217316 . PMID   21718180.
  2. Knop, Katrin; Hoogenboom, Richard; Fischer, Dagmar; Schubert, Ulrich S. (23 August 2010). "Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives". Angewandte Chemie International Edition. 49 (36): 6288–6308. doi:10.1002/anie.200902672. PMID   20648499.
  3. Veronese, Francesco M; Mero, Anna (2008). "The Impact of PEGylation on Biological Therapies". BioDrugs. 22 (5): 315–329. doi:10.2165/00063030-200822050-00004. PMID   18778113. S2CID   23901382.
  4. Veronese, Francesco M.; Pasut, Gianfranco (November 2005). "PEGylation, successful approach to drug delivery". Drug Discovery Today. 10 (21): 1451–1458. doi:10.1016/S1359-6446(05)03575-0. PMID   16243265.
  5. Blume G, Cevc, G (13 April 1990). "Liposomes for the sustained drug release in vivo". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1029 (1): 91–97. doi:10.1016/0005-2736(90)90440-y. PMID   2223816.
  6. Klibanov AL, Maruyama K, Torchilin VP, Huang L (30 July 1990). "Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes". FEBS Lett. 268 (1): 235–237. doi: 10.1016/0014-5793(90)81016-h . PMID   2384160. S2CID   11437990.
  7. Damodaran V. B. ; Fee C. J. (2010). "Protein PEGylation: An overview of chemistry and process considerations". European Pharmaceutical Review. 15 (1): 18–26.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Sherman, MR; Saifer, MG; Perez-Ruiz, F (3 January 2008). "PEG-uricase in the management of treatment-resistant gout and hyperuricemia". Advanced Drug Delivery Reviews. 60 (1): 59–68. doi:10.1016/j.addr.2007.06.011. PMID   17826865.
  9. Veronese, FM; Harris, JM (June 2002). "Introduction and overview of peptide and protein pegylation". Advanced Drug Delivery Reviews. 54 (4): 453–456. doi:10.1016/s0169-409x(02)00020-0. PMID   12052707.
  10. Porfiryeva, N. N.; Moustafine, R. I.; Khutoryanskiy, V. V. (January 2020). "PEGylated Systems in Pharmaceutics" (PDF). Polymer Science, Series C. 62 (1): 62–74. doi:10.1134/S181123822001004X. S2CID   226664780.
  11. Milla, P; Dosio, F (13 January 2012). "PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery". Current Drug Metabolism. 13 (1): 105–119. doi:10.2174/138920012798356934. hdl: 2318/86788 . PMID   21892917.
  12. Davis, Frank F. (June 2002). "The origin of pegnology". Advanced Drug Delivery Reviews. 54 (4): 457–458. doi:10.1016/s0169-409x(02)00021-2. PMID   12052708.
  13. Abuchowski, A; Van Es, T; Palczuk, N. C.; Davis, F. F. (1977). "Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol". The Journal of Biological Chemistry. 252 (11): 3578–81. doi: 10.1016/S0021-9258(17)40291-2 . PMID   405385.
  14. Abuchowski, A; McCoy, J. R.; Palczuk, N. C.; Van Es, T; Davis, F. F. (1977). "Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase". The Journal of Biological Chemistry. 252 (11): 3582–6. doi: 10.1016/S0021-9258(17)40292-4 . PMID   16907.
  15. "Dr. Abraham Abuchowski, Ph.D. – Home". prolongpharma.com. Retrieved 2020-01-15.
  16. Klauser, Alexander (Head), Roche Group Media Relations, "Roche in 2011: Strong results and positive outlook," www.roche.com/med-cor-2012-02-01-e.pdf, Feb 1, 2012, p.7
  17. "Amgen 2011 Annual Report and Financial Summary," 2011 AnnualReport.pdf, Feb 23 2012, p. 71
  18. Zalipsky, Samuel; Pasut, Gianfranco (2020). "Evolution of polymer conjugation to proteins". Polymer-Protein Conjugates. pp. 3–22. doi:10.1016/b978-0-444-64081-9.00001-2. ISBN   9780444640819. S2CID   209731201.
  19. Cabanillas, Beatriz; Akdis, Cezmi; Novak, Natalija (2020). "Allergic reactions to the first COVID‐19 vaccine: A potential role of Polyethylene glycol?". Allergy. 76 (6): 1617–1618. doi: 10.1111/all.14711 . PMID   33320974. S2CID   229284320.
  20. Weiland, Noah; LaFraniere, Sharon; Baker, Mike; Thomas, Katie (17 December 2020). "2 Alaska Health Workers Got Emergency Treatment After Receiving Pfizer's Vaccine". New York Times.
  21. Firger, Jessica; Caldwell, Travis (19 December 2020). "Third Alaskan health care worker has allergic reaction to Covid-19 vaccine". Cable News Network.
  22. Powers, Marie (May 29, 2018). "Biomarin aces final exam: Palynziq gains FDA approval to treat PKU in adults". BioWorld.
  23. Levy, Harvey L.; Sarkissian, Christineh N.; Stevens, Raymond C.; Scriver, Charles R. (June 2018). "Phenylalanine ammonia lyase (PAL): From discovery to enzyme substitution therapy for phenylketonuria". Molecular Genetics and Metabolism. 124 (4): 223–229. doi:10.1016/j.ymgme.2018.06.002. PMID   29941359. S2CID   49411168.
  24. "FDA approves modified antihemophilic factor for hemophilia A". www.fda.gov. Archived from the original on 2015-11-16.
  25. Auth DR, Powell MB (14 September 2020). "Patent Issues Highlight Risks of Moderna's COVID-19 Vaccine". New York Law Journal . Retrieved 1 December 2020.
  26. Vardi N (29 June 2020). "Moderna's Mysterious Coronavirus Vaccine Delivery System". Forbes . Retrieved 1 December 2020.
  27. "Moderna loses key patent challenge". Nature Biotechnology. 38 (9): 1009. September 2020. doi:10.1038/s41587-020-0674-1. PMID   32887970. S2CID   221504018.
  28. Pasut, Gianfranco; Zalipsky, Samuel (2020). Polymer-Protein Conjugates: From Pegylation and Beyond. Elsevier. ISBN   978-0-444-64082-6. OCLC   1127111107.[ page needed ]
  29. Balazs, Daniel A.; Godbey, WT (15 December 2011). "Liposomes for Use in Gene Delivery". Journal of Drug Delivery. 2011: 326497. doi: 10.1155/2011/326497 . PMC   3066571 . PMID   21490748.
  30. Pasut, Gianfranco; Veronese, Francesco M. (July 2012). "State of the art in PEGylation: The great versatility achieved after forty years of research". Journal of Controlled Release. 161 (2): 461–472. doi:10.1016/j.jconrel.2011.10.037. PMID   22094104.
  31. Fee, Conan J.; Van Alstine, James M. (2006). "PEG-proteins: Reaction engineering and separation issues". Chemical Engineering Science. 61 (3): 924. CiteSeerX   10.1.1.509.2865 . doi:10.1016/j.ces.2005.04.040.
  32. Veronese, Francesco M., ed. (2009). "Protein conjugates purification and characterization". PEGylated protein drugs basic science and clinical applications (Online-Ausg. ed.). Basel: Birkhäuser. pp. 113–125. ISBN   978-3-7643-8679-5.
  33. Fee, Conan J. (2003). "Size-exclusion reaction chromatography (SERC): A new technique for protein PEGylation". Biotechnology and Bioengineering. 82 (2): 200–6. doi:10.1002/bit.10561. hdl: 10092/351 . PMID   12584761.
  34. Fee, Conan J.; Damodaran, Vinod B. (2012). "Production of PEGylated Proteins". Biopharmaceutical Production Technology. p. 199. doi:10.1002/9783527653096.ch7. ISBN   9783527653096.
  35. "Polypeptide therapeutics and uses thereof". Wipo (PCT). WO (138413A1). 2016.
  36. "Methods and pharmaceutical compositions for treating candida auris in blood". Wipo (PCT). WO (126695A2). 2019.
  37. "Arginase formulations and methods". Wipo (PCT). WO (8495A2). 2011.
  38. Ryan, Sinéad M; Mantovani, Giuseppe; Wang, Xuexuan; Haddleton, David M; Brayden, David J (2008). "Advances in PEGylation of important biotech molecules: Delivery aspects". Expert Opinion on Drug Delivery. 5 (4): 371–83. doi:10.1517/17425247.5.4.371. PMID   18426380. S2CID   97373496.
  39. Maso, Katia; Grigoletto, Antonella; Pasut, Gianfranco (2018). "Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins". Therapeutic Proteins and Peptides. Advances in Protein Chemistry and Structural Biology. Vol. 112. pp. 123–142. doi:10.1016/bs.apcsb.2018.01.003. ISBN   9780128143407. PMID   29680235.
  40. da Silva Freitas, Débora; Mero, Anna; Pasut, Gianfranco (20 March 2013). "Chemical and Enzymatic Site Specific PEGylation of hGH". Bioconjugate Chemistry. 24 (3): 456–463. doi:10.1021/bc300594y. hdl: 11577/2574695 . PMID   23432141.
  41. Kawai, F. (1 January 2002). "Microbial degradation of polyethers". Applied Microbiology and Biotechnology. 58 (1): 30–38. doi:10.1007/s00253-001-0850-2. PMID   11831473. S2CID   7600787.
  42. Veronese, Francesco M (March 2001). "Peptide and protein PEGylation". Biomaterials. 22 (5): 405–417. doi:10.1016/s0142-9612(00)00193-9. PMID   11214751.
  43. González-Valdez, José; Rito-Palomares, Marco; Benavides, Jorge (June 2012). "Advances and trends in the design, analysis, and characterization of polymer–protein conjugates for 'PEGylaided' bioprocesses". Analytical and Bioanalytical Chemistry. 403 (8): 2225–2235. doi:10.1007/s00216-012-5845-6. PMID   22367287. S2CID   22642574.
  44. Zhang, Genghui; Han, Baozhong; Lin, Xiaoyan; Wu, Xin; Yan, Husheng (December 2008). "Modification of Antimicrobial Peptide with Low Molar Mass Poly(ethylene glycol)". The Journal of Biochemistry. 144 (6): 781–788. doi:10.1093/jb/mvn134. PMID   18845567.
  45. Obuobi, Sybil; Wang, Ying; Khara, Jasmeet Singh; Riegger, Andreas; Kuan, Seah Ling; Ee, Pui Lai Rachel (October 2018). "Antimicrobial and Anti-Biofilm Activities of Surface Engineered Polycationic Albumin Nanoparticles with Reduced Hemolytic Activity". Macromolecular Bioscience. 18 (10): 1800196. doi:10.1002/mabi.201800196. PMID   30066983. S2CID   51888683.
  46. Zhou, Yang; Petrova, Stella P.; Edgar, Kevin J. (2021-11-15). "Chemical synthesis of polysaccharide–protein and polysaccharide–peptide conjugates: A review". Carbohydrate Polymers. 274: 118662. doi: 10.1016/j.carbpol.2021.118662 . ISSN   0144-8617. PMID   34702481. S2CID   239999294.