Benzothiazole

Last updated
Benzothiazole
Benzothiazole numbering.png
Space filling model of benzothiazole Benzothiazole-space-filling.png
Space filling model of benzothiazole
Ball-and-stick model of benzothiazole Benzothiazole-ball-and-stick.png
Ball-and-stick model of benzothiazole
Names
Preferred IUPAC name
1,3-Benzothiazole
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.179 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C7H5NS/c1-2-4-7-6(3-1)8-5-9-7/h1-5H Yes check.svgY
    Key: IOJUPLGTWVMSFF-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C7H5NS/c1-2-4-7-6(3-1)8-5-9-7/h1-5H
    Key: IOJUPLGTWVMSFF-UHFFFAOYAC
  • n1c2ccccc2sc1
Properties
C7H5NS
Molar mass 135.1863 g/mol
Density 1.238 g/mL
Melting point 2 °C (36 °F; 275 K)
Boiling point 227 to 228 °C (441 to 442 °F; 500 to 501 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Benzothiazole, or more specifically 1,3-benzothiazole, is an aromatic heterocyclic compound with the chemical formula C
7
H
5
NS
. It is colorless, slightly viscous liquid. Although the parent compound, benzothiazole is not widely used, many of its derivatives are found in commercial products or in nature. Firefly luciferin can be considered a derivative of benzothiazole.

Contents

The three structural isomers of benzothizaole are 1,3-benzothiazole, 1,2-benzothiazole and 2,1-benzothiazole.

Structure and preparation

Benzothiazoles consist of a 5-membered 1,3-thiazole ring fused to a benzene ring. The nine atoms of the bicycle and the attached substituents are coplanar.

Benzothiazoles are prepared by treatment of 2-mercaptoaniline with acid chlorides: [1]

C6H4(NH2)SH + RC(O)Cl → C6H4(NH)SCR + HCl + H2O

Uses

Benzothiazole occurs naturally in some foods but is also used as a food additive. [2] It has a sulfurous odor and meaty flavor. [3] The European Food Safety Authority assessment had "no safety concern at estimated levels of intake as a flavouring substance". [4]

The heterocyclic core of the molecule is readily substituted at the unique methyne centre in the thiazole ring. It is a thermally stable electron-withdrawing moiety with numerous applications in dyes such as thioflavin. [5] Some drugs contain this group, examples being riluzole and pramipexole. Accelerators for the sulfur vulcanization of rubber are based on 2-mercaptobenzothiazoles. [6] This ring is a potential component in nonlinear optics (NLO). [7] A benzothiazole derivative is suggested as a dye for arsenic detection. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Benzofuran</span> Heterocyclic compound consisting of fused benzene and furan rings

Benzofuran is the heterocyclic compound consisting of fused benzene and furan rings. This colourless liquid is a component of coal tar. Benzofuran is the structural nucleus of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants.

<span class="mw-page-title-main">Oxazole</span> Chemical compound

Oxazole is the parent compound for a vast class of heterocyclic aromatic organic compounds. These are azoles with an oxygen and a nitrogen separated by one carbon. Oxazoles are aromatic compounds but less so than the thiazoles. Oxazole is a weak base; its conjugate acid has a pKa of 0.8, compared to 7 for imidazole.

<span class="mw-page-title-main">Benzimidazole</span> Chemical compound

Benzimidazole is a heterocyclic aromatic organic compound. This bicyclic compound may be viewed as fused rings of the aromatic compounds benzene and imidazole. It is a white solid that appears in form of tabular crystals.

Thiazole, or 1,3-thiazole, is a 5-membered heterocyclic compound that contains both sulfur and nitrogen. The term 'thiazole' also refers to a large family of derivatives. Thiazole itself is a pale yellow liquid with a pyridine-like odor and the molecular formula C3H3NS. The thiazole ring is notable as a component of the vitamin thiamine (B1).

<span class="mw-page-title-main">Arsole</span> Chemical compound

Arsole, also called arsenole or arsacyclopentadiene, is an organoarsenic compound with the formula C4H4AsH. It is classified as a metallole and is isoelectronic to and related to pyrrole except that an arsenic atom is substituted for the nitrogen atom. Whereas the pyrrole molecule is planar, the arsole molecule is not, and the hydrogen atom bonded to arsenic extends out of the molecular plane. Arsole is only moderately aromatic, with about 40% the aromaticity of pyrrole. Arsole itself has not been reported in pure form, but several substituted analogs called arsoles exist. Arsoles and more complex arsole derivatives have similar structure and chemical properties to those of phosphole derivatives. When arsole is fused to a benzene ring, this molecule is called arsindole, or benzarsole.

<span class="mw-page-title-main">Benzoxazole</span> Chemical compound

Benzoxazole is an aromatic organic compound with a molecular formula C7H5NO, a benzene-fused oxazole ring structure, and an odor similar to pyridine. Although benzoxazole itself is of little practical value, many derivatives of benzoxazoles are commercially important.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

<span class="mw-page-title-main">Thiepine</span> Chemical compound

In organic chemistry, thiepine (or thiepin) is an unsaturated seven-membered heterocyclic compound, with six carbon atoms and one sulfur atom. The parent compound, C6H6S is unstable and is predicted to be antiaromatic. Bulky derivatives have been isolated and shown by X-ray crystallography to have nonplanar C6S ring.

<span class="mw-page-title-main">Dibenzothiophene</span> Chemical compound

Dibenzothiophene (DBT, diphenylene sulfide) is the organosulfur compound consisting of two benzene rings fused to a central thiophene ring. It has the chemical formula C12H8S. It is a colourless solid that is chemically somewhat similar to anthracene. This tricyclic heterocycle, and especially its disubstituted derivative 4,6-dimethyldibenzothiophene are problematic impurities in petroleum.

<span class="mw-page-title-main">Isoindoline</span> Chemical compound

Isoindoline is a heterocyclic organic compound with the molecular formula C8H9N. The parent compound has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered nitrogen-containing ring. The compound's structure is similar to indoline except that the nitrogen atom is in the 2 position instead of the 1 position of the five-membered ring. Isoindoline itself is not commonly encountered, but several derivatives are found in nature and some synthetic derivatives are commercially valuable drugs, e.g. lenalidomide and pazinaclone.

<span class="mw-page-title-main">Isoindole</span> Chemical compound

In organic chemistry and heterocyclic chemistry, isoindole consists of a benzene ring fused with pyrrole. The compound is an isomer of indole. Its reduced form is isoindoline. The parent isoindole is a rarely encountered in the technical literature, but substituted derivatives are useful commercially and occur naturally. Isoindoles units occur in phthalocyanines, an important family of dyes. Some alkaloids containing isoindole have been isolated and characterized.

The Cook–Heilbron thiazole synthesis highlights the formation of 5-aminothiazoles through the chemical reaction of α-aminonitriles or aminocyanoacetates with dithioacids, carbon disulphide, carbon oxysulfide, or isothiocyanates at room temperature and under mild or aqueous conditions. Variation of substituents at the 2nd and 4th position of the thiazole is introduced by selecting different combinations of starting reagents.

<span class="mw-page-title-main">Ethane-1,1-dithiol</span> Chemical compound

Ethane-1,1-dithiol is an organosulfur compound with formula CH3CH(SH)2. It is a colourless smelly liquid that is added to or found in some foods. The compound is an example of a geminal dithiol.

<span class="mw-page-title-main">Imidazothiazoles</span> Class of chemical compounds comprising a bicyclic heterocycle

Imidazothiazoles are a class of chemical compounds containing a bicyclic heterocycle consisting of an imidazole ring fused to a thiazole ring. The structure contains three non-carbon or heteroatoms: two nitrogen atoms and one sulfur atom. Imidazothiazole derivatives show a broad spectrum of in vitro, i.e. "in the petri dish", activity such as anticancer, antipsychotic, antimicrobial, antifungal, and anthelmintic.

<span class="mw-page-title-main">Mercaptobenzothiazole</span> Chemical compound

2-Mercaptobenzothiazole is an organosulfur compound with the formula C6H4(NH)SC=S. A white solid, it is used in the sulfur vulcanization of rubber.

In chemistry, dithiadiazoles are a family of heterocyclic compounds with the formula RCN2S2. Two isomers have been studied: the 1,2‑dithia-3,5‑diazoles, in which the sulfur atoms are bonded to each other across the ring from the carbon atom, and the 1,3‑dithia-2,5‑diazoles, in which nitrogen and sulfur atoms alternate around the ring. In both cases, the neutral species are radicals that are of interest as examples of paramagnetic heterocycles. They have also attracted interest because of the tendency of the neutral species to form linear chain compounds, a theme in molecular electronics.

References

  1. T. E. Gilchrist "Heterocyclic Chemistry" 3rd Edition, Longman, 1992.
  2. Le Bozec, Lucille; Moody, Christopher J. (2009). "Naturally Occurring Nitrogen–Sulfur Compounds. The Benzothiazole Alkaloids". Australian Journal of Chemistry. 62 (7): 639. doi:10.1071/CH09126.
  3. "Benzothiazole". The Good Scents Company. Retrieved 2020-10-06.
  4. "Flavouring Group Evaluation 76, (FGE.76) - Consideration of sulphur-containing heterocyclic compounds evaluated by JECFA (59th meeting) structurally related to thiazoles, thiophene, thiazoline and thienyl derivatives from chemical group 29, miscellaneous". EFSA Journal. 6 (11): 875. 2008. doi: 10.2903/j.efsa.2008.875 .
  5. Gill, Rupinder K.; Rawal, Ravindra K.; Bariwal, Jitender (2015). "Recent Advances in the Chemistry and Biology of Benzothiazoles". Archiv der Pharmazie. 348 (3): 155–178. doi: 10.1002/ardp.201400340 . PMID   25682746. S2CID   10421792.
  6. Engels, Hans-Wilhelm; Weidenhaupt, Herrmann-Josef; Pieroth, Manfred; Hofmann, Werner; Menting, Karl-Hans; Mergenhagen, Thomas; Schmoll, Ralf; Uhrlandt, Stefan (2004), "Rubber, 4. Chemicals and Additives", Ullmann's Encyclopedia of Industrial Chemistry, doi:10.1002/14356007.a23_365.pub2, ISBN   3-527-30673-0
  7. Hrobarik, P.; Sigmundova, I.; Zahradnik, P.; et al. (2010). "Molecular Engineering of Benzothiazolium Salts with Large Quadratic Hyperpolarizabilities: Can Auxiliary Electron-Withdrawing Groups Enhance Nonlinear Optical Responses?". Journal of Physical Chemistry C. 114 (50): 22289–22302. doi:10.1021/jp108623d.
  8. Chauhan, Kalpana; Singh, Prem; Kumari, Bhawana; Singhal, Rakesh Kumar (2017-03-16). "Synthesis of new benzothiazole Schiff base as selective and sensitive colorimetric sensor for arsenic on-site detection at ppb level". Analytical Methods. 9 (11): 1779–1785. doi:10.1039/C6AY03302D. ISSN   1759-9679.