List of methylphenidate analogues

Last updated

3D molecular rendering of methylphenidate (MPH) Methylphenidate3Dan.gif
3D molecular rendering of methylphenidate (MPH)

This is a list of methylphenidate (MPH or MPD) analogues, or Phenidates. The most well known compound from this family, methylphenidate, is widely prescribed around the world for the treatment of attention deficit hyperactivity disorder (ADHD) and certain other indications. Several other derivatives including rimiterol, phacetoperane and pipradrol also have more limited medical application. A rather larger number of these compounds have been sold in recent years as designer drugs, either as quasi-legal substitutes for illicit stimulants such as methamphetamine or cocaine, or as purported "study drugs" or nootropics. [1] [2] [3]

Contents

More structurally diverse compounds such as desoxypipradrol (and thus pipradrol, including such derivatives as AL-1095, diphemethoxidine, SCH-5472 and D2PM), and even mefloquine, 2-benzylpiperidine, rimiterol, enpiroline and DMBMPP, can also be considered structurally related, with the former ones also functionally so, as loosely analogous compounds. The acyl group has sometimes been replaced with similar length ketones to increase duration. Alternatively, the methoxycarbonyl has in some cases been replaced with an alkyl group. [4] [5]

Dozens more phenidates and related compounds are known from the academic and patent literature, and molecular modelling and receptor binding studies have established that the aryl and acyl substituents in the phenidate series are functionally identical to the aryl and acyl groups in the phenyltropane series of drugs, suggesting that the central core of these molecules is primarily acting merely as a scaffold to correctly orientate the binding groups, and for each of the hundreds of phenyltropanes that are known, there may be a phenidate equivalent with a comparable activity profile. Albeit with the respective difference in their entropy of binding: cocaine being −5.6 kcal/mol and methylphenidate being −25.5 kcal/mol (Δ s°, measured using [3H]GBR 1278 @ 25 °C). [a]

Notable phenidate derivatives

General structure of phenidate derivatives, where R is nearly always hydrogen but can be alkyl, R1 is usually phenyl or substituted phenyl but rarely other aryl groups, R2 is usually acyl but can be alkyl or other substitutions, and Cyc is nearly always piperidine but rarely other heterocycles Phenidate general structure.png
General structure of phenidate derivatives, where R is nearly always hydrogen but can be alkyl, R1 is usually phenyl or substituted phenyl but rarely other aryl groups, R2 is usually acyl but can be alkyl or other substitutions, and Cyc is nearly always piperidine but rarely other heterocycles
StructureCommon nameChemical nameCAS numberR1R2
2-Benzylpiperidine.png 2-BZPD 2-Benzylpiperidine 32838-55-4 phenyl H
Ritalinic acid-2D-skeletal.svg Ritalinic acid Phenyl(piperidin-2-yl)acetic acid19395-41-6 phenyl COOH
Ritalinamide structure.png Ritalinamide2-Phenyl-2-(piperidin-2-yl)acetamide19395-39-2 phenyl CONH2
Methylphenidate-2D-skeletal.svg Methylphenidate (MPH)Methyl phenyl(piperidin-2-yl)acetate113-45-1phenyl COOMe
Phacetoperane chemical structure.png Phacetoperane (Lidépran)[(R)-phenyl-[(2R)-piperidin-2-yl]methyl] acetate24558-01-8phenylOCOMe
Rimiterol.svg Rimiterol 4-{(S)-hydroxy[(2R)-piperidin-2-yl]methyl}benzene-1,2-diol32953-89-23,4-dihydroxyphenylhydroxy
Ethylphenidate structure.png Ethylphenidate (EPH)Ethyl phenyl(piperidin-2-yl)acetate57413-43-1phenylCOOEt
Propylphenidate proper structure.png Propylphenidate (PPH)Propyl phenyl(piperidin-2-yl)acetate1071564-47-0phenylCOOnPr
Isopropylphenidate structure.png Isopropylphenidate (IPH)Propan-2-yl 2-phenyl-2-(piperidin-2-yl)acetate93148-46-0phenylCOOiPr
Butylphenidate structure.png Butylphenidate (BPH)Butyl phenyl(piperidin-2-yl)acetatephenylCOOnBu
3-chloromethylphenidate structure.png 3-Chloromethylphenidate (3-Cl-MPH)Methyl 2-(3-chlorophenyl)-2-(piperidin-2-yl)acetate191790-73-53-chlorophenylCOOMe
3-bromomethylphenidate structure.png 3-Bromomethylphenidate (3-Br-MPH)Methyl 2-(3-bromophenyl)-2-(piperidin-2-yl)acetate3-bromophenylCOOMe
3-Methylmethylphenidate structure.png 3-Methylmethylphenidate (3-Me-MPH)Methyl 2-(3-methylphenyl)-2-(piperidin-2-yl)acetate3-methylphenylCOOMe
4-Fluoromethylphenidate.svg 4-Fluoromethylphenidate (4F-MPH)Methyl 2-(4-fluorophenyl)-2-(piperidin-2-yl)acetate1354631-33-64-fluorophenylCOOMe
4-fluoroethylphenidate structure.png 4-Fluoroethylphenidate (4F-EPH)Ethyl 2-(4-fluorophenyl)-2-(piperidin-2-yl)acetate2160555-59-74-fluorophenylCOOEt
4-fluoroisopropylphenidate structure.png 4-Fluoroisopropylphenidate (4F-IPH)Propan-2-yl 2-(4-fluorophenyl)-2-(piperidin-2-yl)acetate4-fluorophenylCOOiPr
4-chloromethylphenidate structure.png 4-Chloromethylphenidate (4-Cl-MPH)Methyl 2-(4-chlorophenyl)-2-(piperidin-2-yl)acetate680996-44-54-chlorophenylCOOMe
Dichloromethylphenidate.png 3,4-Dichloromethylphenidate (3,4-DCMP)Methyl 2-(3,4-dichlorophenyl)-2-(piperidin-2-yl)acetate1400742-68-83,4-dichlorophenylCOOMe
34-DCEP structure.png 3,4-Dichloroethylphenidate (3,4-DCEP)Ethyl 2-(3,4-dichlorophenyl)-2-(piperidin-2-yl)acetate3,4-dichlorophenylCOOEt
4-bromomethylphenidate structure.png 4-Bromomethylphenidate (4-Br-MPH)Methyl 2-(4-bromophenyl)-2-(piperidin-2-yl)acetate203056-13-74-bromophenylCOOMe
4-bromoethylphenidate structure.png 4-Bromoethylphenidate (4-Br-EPH)Ethyl 2-(4-bromophenyl)-2-(piperidin-2-yl)acetate1391486-43-34-bromophenylCOOEt
4-methylmethylphenidate.png 4-Methylmethylphenidate (4-Me-MPH)Methyl 2-(4-methylphenyl)-2-(piperidin-2-yl)acetate191790-79-14-methylphenylCOOMe
4-Methylisopropylphenidate structure.png 4-Methylisopropylphenidate (4-Me-IPH)Propan-2-yl 2-(4-methylphenyl)-2-(piperidin-2-yl)acetate4-methylphenylCOOiPr
4-nitromethylphenidate structure.png 4-Nitromethylphenidate (4-NO2-MPH)Methyl 2-(4-nitrophenyl)-2-(piperidin-2-yl)acetate4-nitrophenylCOOMe
Methylenedioxymethylphenidate structure.png Methylenedioxymethylphenidate (MDMPH)Methyl (1,3-benzodioxol-5-yl)(piperidin-2-yl)acetate3,4-methylenedioxyphenylCOOMe
HDMP-28.png Methylnaphthidate (HDMP-28)Methyl (naphthalen-2-yl)(piperidin-2-yl)acetate231299-82-4naphthalen-2-ylCOOMe
HDEP-28.png Ethylnaphthidate (HDEP-28)Ethyl (naphthalen-2-yl)(piperidin-2-yl)acetate2170529-69-6naphthalen-2-ylCOOEt
Isopropylnaphthidate structure.png IsopropylnaphthidatePropan-2-yl (naphthalen-2-yl)(piperidin-2-yl)acetatenaphthalen-2-ylCOOiPr
MTMP structure.png MTMPMethyl (thiophen-2-yl)(piperidin-2-yl)acetatethiophen-2-ylCOOMe
Alpha-acetyl-2-BZPD structure.png α-acetyl-2-benzylpiperidine1-Phenyl-1-(piperidin-2-yl)propan-2-onephenylacetyl
CPMBP structure.png CPMBP2-[1-(3-chlorophenyl)-3-methylbutyl]piperidine3-chlorophenylisobutyl
Desoxypipradrol.svg Desoxypipradrol (2-DPMP)2-benzhydrylpiperidine519-74-4phenylphenyl
Pipradrol.svg Pipradrol (Meratran)Diphenyl(piperidin-2-yl)methanol467-60-7phenylhydroxy, phenyl
Related compounds

A number of related compounds are known which fit the same general structural pattern, but with substitution on the piperidine ring (e.g. SCH-5472, Difemetorex, N-benzylethylphenidate), or the piperidine ring replaced by other heterocycles such as pyrrolidine (e.g. diphenylprolinol, 2-Diphenylmethylpyrrolidine), morpholine (e.g. Methylmorphenate, 3-Benzhydrylmorpholine) or quinoline (e.g. AL-1095, Butyltolylquinuclidine).

StructureCommon nameChemical nameCAS number
SCH-5472 structure.png SCH-54722-benzhydryl-1-methyl-piperidin-3-ol20068-90-0
Difemetorex.svg Difemetorex2-[2-(diphenylmethyl)piperidin-1-yl]ethanol13862-07-2
N-benzylethylphenidate structure.png N-benzylethylphenidateEthyl (1-benzylpiperidin-2-yl)(phenyl)acetate
Serdexmethylphenidate chloride PNG.png Serdexmethylphenidate (1-((((R)-2-((R)-2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carbonyl)oxy)methyl)pyridin-1-ium-3-carbonyl)-L-serinate chloride1996626-30-2
SS9b structure.png DMBMPP 2-(2,5-dimethoxy-4-bromobenzyl)-6-(2-methoxyphenyl)piperidine1391499-52-7
Diphenylprolinol.svg Diphenylprolinol (D2PM)diphenyl(pyrrolidin-2-yl)methanol22348-32-9
2-Diphenylmethylpyrrolidine.png 2-Benzhydrylpyrrolidine2-(Diphenylmethyl)pyrrolidine119237-64-8
HDMP-29.svg HDMP-29Methyl (naphthalen-2-yl)(pyrrolidin-2-yl)acetate
Methyl 2-morpholin-3-yl-2-phenylacetate.svg MethylmorphenateMethyl morpholin-3-yl(phenyl)acetate
3-Benzhydrylmorpholine.svg 3-Benzhydrylmorpholine3-(diphenylmethyl)morpholine93406-27-0
AL-1095 structure.png AL-10952-(1-phenyl-1-(p-chlorophenyl)methyl)-3-hydroxyquinuclidine54549-19-8
Butyltolylquinuclidine.png Butyltolylquinuclidine(2R,3S,4S)-2-butyl-3-p-tolylquinuclidine

Isomerism

Alternate two dimensional rendering of "D-threo-methylphenidate"; demonstrating the plasticity of the piperidine ring in a 'flexed' or "chair" conformation. (the latter term can denote a structure containing a bridge in the ring when so-named, unlike the above).

N.B. although the cyclohexane conformation, if considering both the hydrogen on the plain bond and the implicit carbon on the dotted bond are not shown as positioned as would be for the least energy state inherent to what rules apply, internally, to the molecule in and of itself: possibility of movement between putative other ligand sites in suchwise, here regarding what circumstance allows for describing it as "flexed" thus mean it has shown tendency for change in situ depending on its environment and adjacent sites of potential interaction as against its least energy state. FlexedRingD-Threo-Methylphenidate.svg
Alternate two dimensional rendering of "D-threo-methylphenidate"; demonstrating the plasticity of the piperidine ring in a 'flexed' or "chair" conformation. (the latter term can denote a structure containing a bridge in the ring when so-named, unlike the above).

N.B. although the cyclohexane conformation, if considering both the hydrogen on the plain bond and the implicit carbon on the dotted bond are not shown as positioned as would be for the least energy state inherent to what rules apply, internally, to the molecule in and of itself: possibility of movement between putative other ligand sites in suchwise, here regarding what circumstance allows for describing it as "flexed" thus mean it has shown tendency for change in situ depending on its environment and adjacent sites of potential interaction as against its least energy state.

Methylphenidate (and its derivatives) have two chiral centers, meaning that it, and each of its analogues, have four possible enantiomers, each with differing pharmacokinetics and receptor binding profiles. In practice methylphenidate is most commonly used as pairs of diastereomers rather than isolated single enantiomers or a mixture of all four isomers. Forms include the racemate, the enantiopure (dextro or levo) of its stereoisomers; erythro or threo (either + or -) among its diastereoisomers, the chiral isomers S,S; S,R/R,S or R,R and, lastly, the isomeric conformers (which are not absolute) of either its anti- or gauche- rotamer. The variant with optimized efficacy is not the usually attested generic or common pharmaceutical brands (e.g. Ritalin, Daytrana etc.) but the (R,R)-dextro-(+)-threo-anti (sold as Focalin), which has a binding profile on par with or better than that of cocaine. [b] (Note however the measure of fivefold (5×) discrepancy in the entropy of binding at their presumed shared target binding site, which may account for the higher abuse potential of cocaine over methylphenidate despite affinity for associating; i.e the latter dissociates more readily once bound despite efficacy for binding. [c] ) Furthermore, the energy to change between its two rotamers involves the stabilizing of the hydrogen bond between the protonated amine (of an 8.5 pKa) with the ester carbonyl resulting in reduced instances of "gauche—gauche" interactions via its favoring for activity the "anti"-conformer for putative homergic-psychostimulating pharmacokinetic properties, postulating that one inherent conformational isomer ("anti") is necessitated for the activity of the threo diastereoisomer. [d]

Also of note is that methylphenidate in demethylated form is acidic; a metabolite (and precursor) known as ritalinic acid. [8] This gives the potential to yield a conjugate salt [9] form effectively protonated by a salt nearly chemically duplicate/identical to its own structure; creating a "methylphenidate ritalinate". [10]

Receptor binding profiles of selected methylphenidate analogues

Aryl substitutions

Phenyl ring substituted methylphenidate analogues [e]
CompoundS. Singh's
alphanumeric
assignation
(name)
R1R2IC50 (nM)
(Inhibition of [3H]WIN 35428 binding)
IC50 (nM)
(Inhibition of [3H]DA uptake)
Selectivity
uptake/binding
Methylphenidate-2D-skeletal.svg
(D-threo-methylphenidate)H, H33244 ± 142
(171 ± 10)
7.4
(L-threo-methylphenidate)5405100
(1468 ± 112)
9.4
(D/L-threo-methylphenidate)
"eudismic ratio"
6.420.9
(8.6)
-
(DL-threo-methylphenidate)83.0 ± 7.9224 ± 192.7
CocaineHCl.svg (R-benzoyl-methylecgonine)
(cocaine)
(H, H)173 ± 13404 ± 262.3
MPH351a-nanalog.svg
351a (4F-MPH)FH
y
d
r
o
g
e
n
i.e.
H
35.0 ± 3.0142 ± 2.04.1
351bCl20.6 ± 3.473.8 ± 8.13.6
351cBr6.9 ± 0.126.3 ± 5.83.8
351d(d) Br-22.5 ± 2.1-
351e(l) Br-408 ± 17-
351d/e
"eudismic ratio"
(d/l) Br-18.1-
351fI14.0 ± 0.164.5 ± 3.54.6
351gOH98.0 ± 10340 ± 703.5
351hOCH383 ± 11293 ± 483.5
351i(d) OCH3-205 ± 10-
351j(l) OCH3-3588 ± 310-
351i/j
"eudismic ratio"
(d/l) OCH3-17.5-
351k (4-Me-MPH)CH333.0 ± 1.2126 ± 13.8
351lt-Bu13500 ± 4509350 ± 9500.7
351mNH2.HCl34.6 ± 4.0115 ± 103.3
351nNO2494 ± 331610 ± 2103.3
MPH352a-ganalog.svg
352aF40.5 ± 4.5160 ± 0.004.0
352bCl5.1 ± 1.623.0 ± 3.04.5
352cBr4.2 ± 0.212.8 ± 0.203.1
352dOH321 ± 1.0790 ± 302.5
352eOMe288 ± 53635 ± 350.2
352fMe21.4 ± 1.1100 ± 184.7
352gNH2.HCl265 ± 5578 ± 1602.2
MPH353a-eanalog.svg 353a2-F1420 ± 1202900 ± 3002.1
353b2-Cl1950 ± 2302660 ± 1401.4
353c2-Br1870 ± 1353410 ± 2901.8
353d2-OH23100 ± 5035,800 ± 8001.6
353e2-OCH3101,000 ± 10,00081,000 ± 20000.8
MPH354a-canalog.svg 354a (3,4-DCMP)Cl, Cl
(3,4-Cl2)
5.3 ± 0.77.0 ± 0.61.3
354bIOH42 ± 21195 ± 1974.6
354cOMe, OMe
(3,4-OMe2)
810 ± 101760 ± 1602.2

Both analogues 374 & 375 displayed higher potency than methylphenidate at DAT. In further comparison, 375 (the 2-naphthyl) was additionally two & a half times more potent than 374 (the 1-naphthyl isomer). [f]

Aryl exchanged analogues

Phenyl ring modified methylphenidate analogues [g]
CompoundS. Singh's
alphanumeric
assignation
(name)
RingKi (nM)
(Inhibition of [125I]IPT binding)
Ki (nM)
(Inhibition of [3H]DA uptake)
Selectivity
uptake/binding
Dexmethylphenidate structure.svg (D-threo-methylphenidate)benzene324--
Methylphenidate-2D-skeletal.svg (DL-threo-methylphenidate)82 ± 77429 ± 880.7
MPH374analog.svg 3741-naphthalene194 ± 151981 ± 44310.2
HDMP-28.png 375
(HDMP-28)
2-naphthalene79.585.2 ± 251.0
MPH376analog.svg 376benzyl>5000--
HDMP-29, a manifold (multiple augmented) analogue of both the phenyl (to a 2-naphthalene) and piperidine (to a 2-pyrrolidine) rings. HDMP-29.svg
HDMP-29, a manifold (multiple augmented) analogue of both the phenyl (to a 2-naphthalene) and piperidine (to a 2-pyrrolidine) rings.

Piperidine nitrogen methylated phenyl-substituted variants

N-methyl phenyl ring substituted methylphenidate analogues [h]
CompoundS. Singh's
alphanumeric
assignation
(name)
RIC50 (nM)
(Inhibition of binding at DAT)
MPH373a-eanalog.svg
373aH500 ± 25
373b4-OH1220 ± 140
373c4-CH3139 ± 13
373d3-Cl161 ± 18
373e3-Me108 ± 16
HDEP-28, Ethylnaphthidate. HDEP-28.png
HDEP-28, Ethylnaphthidate.

Cycloalkane extensions, contractions & modified derivatives

Piperidine ring modified methylphenidate analogues [i]
CompoundS. Singh's
alphanumeric
assignation
(name)
Cycloalkane
ring
Ki (nM)
(Inhibition of binding)
MPH380analog.svg 3802-pyrrolidine
(cyclopentane)
1336 ± 108
MPH381analog.svg 3812-azepane
(cycloheptane)
1765 ± 113
MPH382analog.svg 3822-azocane
(cyclooctane)
3321 ± 551
MPH383analog.svg 3834-1,3-oxazinane
(cyclohexane)
6689 ± 1348
Methyl 2-(1,2-oxazinan-3-yl)-2-phenylacetate.svg
Methyl 2-(1,2-oxazinan-3-yl)-2-phenylacetate
Methyl 2-(1,3-oxazinan-2-yl)-2-phenylacetate.svg
Methyl 2-(1,3-oxazinan-2-yl)-2-phenylacetate
The two other (in addition to compound 383) potential oxazinane methylphenidate analogues.
Methyl 2-morpholin-3-yl-2-phenylacetate.svg
Methyl 2-phenyl-2-(morpholin-3-yl)acetate
A.K.A. Methyl 2-morpholin-3-yl-2-phenylacetate
Methylmorphenate methylphenidate analogue. [12]

Azido-iodo-N-benzyl analogues

Structures of Azido-iodo-N-benzyl analogues of methylphenidate with affinities. [13]

Azido-iodo-N-benzyl methylphenidate analogs inhibitition of [3H]WIN 35428 binding and [3H]dopamine uptake at hDAT N2A neuroblastoma cells. [13]
(Each Ki or IC50 value represents data from at least three independent experiments with each data point on the curve performed in duplicate)
StructureCompoundR1R2Ki (nM)
(Inhibition of [3H]WIN 35428 binding)
IC50 (nM)
(Inhibition of [3H]DA uptake)
(±)—threo-methylphenidateHH25 ± 1156 ± 58
(±)—4-I-methylphenidatepara-iodoH14 ± 3ɑ11 ± 2b
(±)—3-I-methylphenidatemeta-iodoH4.5 ± 1ɑ14 ± 5b
N-Benzyl Methylphenidate.png
(±)—p-N3-N-Bn-4-I-methylphenidatepara-iodopara-N3-N-Benzyl363 ± 28ɑ2764 ± 196bc
(±)—m-N3-N-Bn-4-I-methylphenidatepara-iodometa-N3-N-Benzyl2754 ± 169ɑ7966 ± 348bc
(±)—o-N3-N-Bn-4-I-methylphenidatepara-iodoortho-N3-N-Benzyl517 ± 65ɑ1232 ± 70bc
(±)—p-N3-N-Bn-3-I-methylphenidatemeta-iodopara-N3-N-Benzyl658 ± 70ɑ1828 ± 261bc
(±)—m-N3-N-Bn-3-I-methylphenidatemeta-iodometa-N3-N-Benzyl2056 ± 73ɑ4627 ± 238bc
(±)—o-N3-N-Bn-3-I-methylphenidatemeta-iodoortho-N3-N-Benzyl1112 ± 163ɑ2696 ± 178bc
(±)—N-Bn-methylphenidateHN-Benzyl
(±)—N-Bn-3-chloro-methylphenidate3-ClN-Benzyl
(±)—N-Bn-3,4-dichloro-methylphenidate3,4-diClN-Benzyl
(±)—p-chloro-N-Bn-methylphenidateHpara-Cl-N-Benzyl
(±)—p-methoxy-N-Bn-methylphenidateHpara-OMe-N-Benzyl
(±)—m-chloro-N-Bn-methylphenidateHmeta-Cl-N-Benzyl
(±)—p-nitro-N-Bn-methylphenidateHpara-NO2-N-Benzyl
Additional arene/nitrogen-linked MPH analogs
ChEMBL1254008 Structure.svg
ChEMBL1254008 [14]
ChEMBL1255099 Structure.svg
ChEMBL1255099 [15]

Alkyl substituted-carbomethoxy analogues

Alkyl RR/SS diastereomer analogs of methylphenidate [4]
(RS/SR diastereomer values of otherwise same compounds given in small grey typeface [4] )
StructureR1R2R3Dopamine transporter Ki (nM)
(Inhibition of [I125H]RTI-55 binding)
DA uptake
IC50 (nM)
Serotonin transporter Ki (nM)
(Inhibition of [I125H]RTI-55 binding)
5HT uptake
IC50 (nM)
Norepinephrine transporter Ki (nM)
(Inhibition of [I125H]RTI-55 binding)
NE uptake
IC50 (nM)
NE/DA selectivity
(binding displacement)
NE/DA selectivity
(uptake blocking)
Cocaine
ɑ

b

c
500 ± 65240 ± 15340 ± 40250 ± 40500 ± 90210 ± 301.00.88
TrisubMPH.png
HCOOCH3H110 ± 979 ± 1665,000 ± 4,0005,100 ± 7,000660 ± 5061 ± 146.00.77
4-chloroCOOCH3H25 ± 8
2,000 ± 600
11 ± 28
2,700 ± 1,000
6,000 ± 100
5,900 ± 200
>9,800
>10 mM
110 ± 40
>6,100
11 ± 3
1,400 ± 400
4.41.0
4-chloromethylH180 ± 70
>3,900
22 ± 7
1,500 ± 700
4,900 ± 500
>9,100
1,900 ± 300
4,700 ± 800
360 ± 140
>6,300
35 ± 13
3,200 ± 800
2.01.6
4-chloroethylH37 ± 10
1,800 ± 300
23 ± 5
2,800 ± 700
7,800 ± 800
4,200 ± 400
2,400 ± 400
4,100 ± 1,000
360 ± 60
>9,200
210 ± 30
1,300 ± 400
9.79.1
4-chloropropylH11 ± 3
380 ± 40
7.4 ± 0.4
450 ± 60
2,700 ± 600
3,200 ± 1,100
2,900 ± 1,100
1,300 ± 7
200 ± 80
1,400 ± 400
50 ± 15
200 ± 50
18.06.8
4-chloroisopropylH46 ± 16
900 ± 320
32 ± 6
990 ± 280
5,300 ± 1,300
>10 mM
3,300 ± 400
810 ± 170
>10 mM
51 ± 20
18.01.6
4-chlorobutylH7.8 ± 1.1
290 ± 70
8.2 ± 2.1
170 ± 40
4,300 ± 400
4,800 ± 700
4,000 ± 400
3,300 ± 600
230 ± 30
1,600 ± 300
26 ± 7
180 ± 60
29.03.2
4-chloroisobutylH16 ± 4
170 ± 50
8.6 ± 2.9
380 ± 130
5,900 ± 900
4,300 ± 500
490 ± 80
540 ± 150
840 ± 130
4,500 ± 1,500
120 ± 40
750 ± 170
53.014.0
4-chloropentylH23 ± 7
870 ± 140
45 ± 14
650 ± 20
2,200 ± 100
3,600 ± 1,000
1,500 ± 300
1,700 ± 700
160 ± 40
1,500 ± 300
49 ± 16
860 ± 330
7.01.1
4-chloroisopentylH3.6 ± 1.2
510 ± 170
14 ± 2
680 ± 120
5,000 ± 470
6,700 ± 500
7,300 ± 1,400
>8,300
830 ± 110
12,000 ± 1,400
210 ± 40
3,000 ± 540
230.015.0
4-chloroneopentylH120 ± 40
600 ± 40
60 ± 2
670 ± 260
3,900 ± 500
3,500 ± 1,000
>8,300
1,800 ± 600
1,400 ± 400
>5,500
520 ± 110
730 ± 250
12.08.7
4-chlorocyclopentylmethylH9.4 ± 1.5
310 ± 80
21 ± 1
180 ± 20
2,900 ± 80
3,200 ± 700
2,100 ± 900
5,600 ± 1,400
1,700 ± 600
2,600 ± 800
310 ± 40
730 ± 230
180.015.0
4-chlorocyclohexylmethylH130 ± 40
260 ± 30
230 ± 70
410 ± 60
900 ± 400
3,700 ± 500
1,000 ± 200
6,400 ± 1,300
4,200 ± 200
4,300 ± 200
940 ± 140
1,700 ± 600
32.04.1
4-chlorobenzylH440 ± 110
550 ± 60
370 ± 90
390 ± 60
1,100 ± 200
4,300 ± 800
1,100 ± 200
4,700 ± 500
2,900 ± 800
4,000 ± 800
2,900 ± 600
>8,800
6.67.8
4-chlorophenethylH24 ± 9
700 ± 90
160 ± 20
420 ± 140
640 ± 60
1,800 ± 70
650 ± 210
210 ± 900d
1,800 ± 600
2,400 ± 700
680 ± 240
610 ± 150
75.04.3
4-chlorophenpropylH440 ± 150
2,900 ± 900
290 ± 90
1,400 ± 400
700 ± 200
1,500 ± 200
1,600 ± 300
1,200 ± 400
490 ± 100
1,500 ± 200
600 ± 140
1,700 ± 200
1.12.1
4-chloro3-pentylH400 ± 80
>5,700
240 ± 60
1,200 ± 90
3,900 ± 300
4,800 ± 1,100
>9,400
>9,600
970 ± 290
4,300 ± 200
330 ± 80
3,800 ± 30
2.41.4
4-chlorocyclopentylH36 ± 10
690 ± 140
27 ± 8.3
240 ± 30
5,700 ± 1,100
4,600 ± 700
4,600 ± 800
4,200 ± 900
380 ± 120
3,300 ± 800
44 ± 18
1,000 ± 300
11.01.6
3-chloroisobutylH3.7 ± 1.1
140 ± 30
2.8 ± 0.4
88 ± 12
3,200 ± 400
3,200 ± 400
2,100 ± 100
870 ± 230
23 ± 6
340 ± 50
14 ± 1
73 ± 5
6.25.0
3,4-dichloroCOOCH3H1.4 ± 0.1
90 ± 14
23 ± 3
800 ± 110
1,600 ± 150
2,500 ± 420
540 ± 110
1,100 ± 90
14 ± 6
4,200 ± 1,900
10 ± 1
190 ± 50
10.00.43
3,4-dichloropropylH0.97 ± 0.31
43 ± 9
4.5 ± 0.4
88 ± 32
1,800 ± 500
450 ± 80
560 ± 120
180 ± 60
3.9 ± 1.4
30 ± 8
8.1 ± 3.8
47 ± 22
4.01.8
3,4-dichlorobutylH2.3 ± 0.2
29 ± 5
5.7 ± 0.5
67 ± 13
1,300 ± 300
1,100 ± 200
1,400 ± 300
550 ± 80
12 ± 3
31 ± 11
27 ± 10
63 ± 27
5.24.7
3,4-dichloroisobutylH1.0 ± 0.5
31 ± 11
5.5 ± 1.3
13 ± 3
1,600 ± 100
450 ± 40
1,100 ± 300
290 ± 60
25 ± 9
120 ± 30
9.0 ± 1.2
19 ± 3
25.01.6
3,4-dichloroisobutylCH36.6 ± 0.9
44 ± 12
13 ± 4
45 ± 4
1,300 ± 200
1,500 ± 300
1,400 ± 500
2,400 ± 700
190 ± 60
660 ± 130
28 ± 3
100 ± 19
29.02.2
4-methoxyisobutylH52 ± 16
770 ± 220
25 ± 9
400 ± 120
2,800 ± 600
950 ± 190
3,500 ± 500
1,200 ± 300
3,100 ± 200
16,000 ± 2,000
410 ± 90
1,600 ± 400
60.016.0
3-methoxyisobutylH22 ± 5
950 ± 190
35 ± 12
140 ± 20
4,200 ± 400
3,800 ± 600
2,700 ± 800
2,600 ± 300
3,800 ± 500
12,000 ± 2,300
330 ± 40
1,400 ± 90
170.09.4
4-isopropylisobutylH3,300 ± 600
>6,500
4,000 ± 400
>9,100
3,300 ± 600
1,700 ± 500
4,700 ± 700
1,700 ± 100
2,500 ± 600
3,200 ± 600
7,100 ± 1,800
>8,700
0.761.8
HCOCH3H370 ± 70190 ± 507,800 ± 1,200>9,7002,700 ± 400220 ± 307.31.2

Restricted rotational analogs of methylphenidate (quinolizidines)

Two of the compounds tested, the weakest two @ DAT & second to the final two on the table below, were designed to elucidate the necessity of both constrained rings in the efficacy of the below series of compounds at binding by removing one or the other of the two rings in their entirety. The first of the two retain the original piperidine ring had with methylphenidate but has the constrained B ring that is common to the restricted rotational analogues thereof removed. The one below lacks the piperdine ring native to methylphenidate but keeps the ring that hindered the flexibility of the original MPH conformation. Though their potency at binding is weak in comparison to the series, with the potency shared being approximately equal between the two; the latter compound (the one more nearly resembling the substrate class of dopaminergic releasing agents similar to phenmetrazine) is 8.3-fold more potent @ DA uptake.

Binding assaysg of rigid methylphenidate analogues [16]
CompoundɑR & X substitution(s)Ki (nM)
@ DAT with [33]WIN 35,065-2
nH
@ DAT with [33]WIN 35,065-2
Ki (nM) or
% inhibition
@ NET with [33]Nisoxetine
nH
@ NET with [33]Nisoxetine
Ki (nM) or
% inhibition
@ 5-HTT with [33]Citalopram
nH
@ 5-HTT with [33]Citalopram
[33]DA uptake
IC50 (nM)
Selectivity
[33]Citalopram / [33]WIN 35,065-2
Selectivity
[33]Nisoxetine / [33]WIN 35,065-2
Selectivity
[33]Citalopram / [33]Nisoxetine
Cocaine156 ± 111.03 ± 0.011,930 ± 3600.82 ± 0.05306 ± 131.12 ± 0.15404 ± 262.0120.16
Methylphenidate74.6 ± 7.40.96 ± 0.08270 ± 230.76 ± 0.0614 ± 8%f230 ± 16>1303.6>47
3,4-dichloro-MPH4.76 ± 0.622.07 ± 0.05NDh667 ± 831.07 ± 0.047.00 ± 140140
MPH RRA 11.png
6,610 ± 4400.91 ± 0.0111%b3,550 ± 701.79 ± 0.558,490 ± 1,8000.54>0.76<0.7
MPH RRA 12a--c.png
H76.2 ± 3.41.05 ± 0.05138 ± 9.01.12 ± 0.205,140 ± 6701.29 ± 0.40244 ± 2.5671.837
3,4-diCl3.39 ± 0.771.25 ± 0.2928.4 ± 2.51.56 ± 0.80121 ± 171.16 ± 0.3111.0 ± 0.00368.44.3
2-Cl480 ± 461.00 ± 0.092,750; 58%b0.961,840 ± 701.18 ± 0.061,260 ± 2903.85.70.67
MPH RRA 16.png
34.6 ± 7.60.95 ± 0.18160 ± 181.28 ± 0.12102 ± 8.21.01 ± 0.0287.6 ± 0.353.04.60.64
MPH RRA 18--19.png
CH2OH2,100 ± 6970.87 ± 0.09NDh16.2 ± 0.05%f10,400 ± 530>4.8
CH37,610 ± 8001.02 ± 0.038.3%b11 ± 5%f7,960 ± 290>1.3≫0.66
MPH RRA 23a 24ab 31ab.png
d R=OCH3, X=H570 ± 490.94 ± 0.102,040; 64 ± 1.7%f0.7314 ± 3%f1,850 ± 160>183.6>4.9
R=OH, X=H6,250 ± 2800.86 ± 0.0323.7 ± 4.1%b1 ± 1%f10,700 ± 750≫1.6>0.80
R=OH, X=3,4-diCl35.7 ± 3.21.00 ± 0.09367 ± 421.74 ± 0.872,050 ± 1101.15 ± 0.12NDh57105.6
MPH RRA 25ab.png
H908 ± 1600.88 ± 0.054030; 52%b1.045 ± 1%f12,400 ± 1,500≫114.4≫2.5
3,4-diCl14.0 ± 1.21.27 ± 0.20280 ± 760.68 ± 0.0954 ± 2%fNDh~71020~36
MPH RRA 26ab 27a 33ab.png
R=OH, X=H108 ± 7.00.89 ± 0.10351 ± 850.94 ± 0.2712 ± 2%f680 ± 52>933.3>28
R=OH, X=3,4-diCl2.46 ± 0.521.39 ± 0.2027.9 ± 3.50.70 ± 0.011681.02NDh68116.0
R=OCH3, X=H10.8 ± 0.80.97 ± 0.0763.7 ± 2.80.84 ± 0.042,070; 73 ± 5%f0.9061.0 ± 9.31905.932
MPH RRA 29ab.png
R1=CH3, R2=H178 ± 281.23 ± 0.09694 ± 650.88 ± 0.134271.393682.43.90.62
R1=H, R2=CH3119 ± 201.17 ± 0.1276.0 ± 120.88 ± 0.062431.172482.00.643.2
MPH RRA 30.png
175 ± 8.01.00 ± 0.041,520 ± 1200.97 ± 0.0619 ± 4%fNDh>578.69>6.6
MPH RRA 23a 24ab 31ab.png
R=CH2CH3, X=H27.6 ± 1.71.29 ± 0.05441 ± 491.16 ± 0.192,390; 80%f1.12NDh87155.8
R=CH2CH3, X=3,4-diCl3.44 ± 0.021.90 ± 0.05102 ± 191.27 ± 0.10286 ± 471.30 ± 0.10NDh83302.8
MPH RRA 26ab 27a 33ab.png
R=CH2CH3, X=H5.51 ± 0.931.15 ± 0.0360.8 ± 9.60.75 ± 0.073,550; 86%f0.95NDh6401158
R=CH2CH3, X=3,4-diCl4.12 ± 0.951.57 ± 0.0098.8 ± 8.71.07 ± 0.07199 ± 171.24 ± 0.00NDh48242.0
MPH RRA 34.png
6,360 ± 1,3001.00 ± 0.0436 ± 10%c22 ± 7%f8,800 ± 870>1.6
MPH RRA 35.png
i4,560 ± 1,1001.10 ± 0.09534 ± 210c0.96 ± 0.0853 ± 6%f1,060 ± 115~2.20.12~19
MPH RRA 36a--36e.png
R1=CH2OH, R2=H, X=H406 ± 41.07 ± 0.08NDh31.0 ± 1.5%f1,520 ± 15>25
R1=CH2OCH3, R2=H, X=H89.9 ± 9.40.97 ± 0.04NDh47.8 ± 0.7%f281 ± 19~110
R1=CH2OH, R2=H, X=3,4-diCl3.91 ± 0.491.21 ± 0.06NDh276; 94.6%f0.8922.5 ± 1.471
R1=H, R2=CO2CH3, X=3,4-diCl363 ± 201.17 ± 0.41NDh2,570 ± 5801.00 ± 00.1317 ± 467.1
R1=CO2CH3, R2=H, X=2-Cl1,740 ± 2000.98 ± 0.02NDh22.2 ± 2.5%f2,660 ± 140>5.7

Various MPH congener affinity values inclusive of norepinephrine & serotonin

Values for dl-threo-methylphenidate derivatives are the mean (s.d.) [17] of 3—6 determinations, or are the mean of duplicate determinations. Values of other compounds are the mean—s.d. for 3—4 determinations where indicated, or are results of single experiments which agree with the literature. All binding experiments were done in triplicate. [18]

Binding and uptake IC50 (nM) values for MAT.
CompoundDADA UptakeNE5HT
Methylphenidate84 ± 33153 ± 92514 ± 74>50,000
o-Bromomethylphenidate880 ± 31620,000
m-Bromomethylphenidate4 ± 118 ± 1120 ± 63,800
p-Bromomethylphenidate21 ± 345 ± 1931 ± 72,600
p-Hydroxymethylphenidate125263 ± 74270 ± 6917,000
p-Methyloxymethylphenidate42 ± 24490 ± 27041011,000
p-Nitromethylphenidate1803605,900
p-Iodomethylphenidate26 ± 14321,800ɑ
m-Iodo-p-hydroxymethylphenidate42 ± 21195 ± 197370 ± 645,900
N-Methylmethylphenidate1,4002,80040,000
d-threo-Methylphenidate33244 ± 142>50,000
l-threo-Methylphenidate5405,100>50,000
dl-erythro-o-Bromomethylphenidate10,00050,000
Cocaine120313 ± 1602,100190
WIN 35,428 1353072
Nomifensine 29 ± 1615 ± 21,300ɑ
Mazindol 9 ± 53 ± 292
Desipramine 1,4003.5200
Fluoxetine 3,3003,4002.4

p-hydroxymethylphenidate displays low brain penetrability, ascribed to its phenolic hydroxyl group undergoing ionization at physiological pH.

See also

HDMP-28 molecular model superimposed over b-CFT. cf. cocaine, and the phenyltropane class of drugs, including all subsets of related derivatives for either as pertaining in similarity to methylphenidate analogs. HDMP28andCFT-3D-overlay.png
HDMP-28 molecular model superimposed over β-CFT. cf. cocaine, and the phenyltropane class of drugs, including all subsets of related derivatives for either as pertaining in similarity to methylphenidate analogs.
DextroMPH-overlays-betaCPT.png
Methylphenidate rendered in 3D (in blue) overlaid with 1-(2-Phenylethyl) piperazine skeleton (turquoise) showing the basic 3- point pharmacophore shared between them and other dopamine reuptake inhibitors such as 3C-PEP (which in turn is structurally related to the GBR stimulant compounds.) Methylphenidate overlaid 1-(2-Phenylethyl)piperazine.png
Methylphenidate rendered in 3D (in blue) overlaid with 1-(2-Phenylethyl) piperazine skeleton (turquoise) showing the basic 3- point pharmacophore shared between them and other dopamine reuptake inhibitors such as 3C-PEP (which in turn is structurally related to the GBR stimulant compounds.)

Related Research Articles

<span class="mw-page-title-main">WIN-35428</span> Chemical compound

WIN 35,428 is a stimulant drug used in scientific research. CFT is a phenyltropane based dopamine reuptake inhibitor and is structurally derived from cocaine. It is around 3-10x more potent than cocaine and lasts around 7 times longer based on animal studies. While the naphthalenedisulfonate salt is the most commonly used form in scientific research due to its high solubility in water, the free base and hydrochloride salts are known compounds and can also be produced. The tartrate is another salt form that is reported.

<span class="mw-page-title-main">Phenyltropane</span> Class of chemical compounds

Phenyltropanes (PTs) were originally developed to reduce cocaine addiction and dependency. In general these compounds act as inhibitors of the plasmalemmal monoamine reuptake transporters. This research has spanned beyond the last couple decades, and has picked up its pace in recent times, creating numerous phenyltropanes as research into cocaine analogues garners interest to treat addiction.

<span class="mw-page-title-main">(+)-CPCA</span> Stimulant drug

(+)-CPCA is a stimulant drug similar in structure to pethidine and to RTI-31, but nocaine lacks the two-carbon bridge of RTI-31's tropane skeleton. This compound was first developed as a substitute agent for cocaine.

<span class="mw-page-title-main">Troparil</span> Chemical compound

Troparil is a stimulant drug used in scientific research. Troparil is a phenyltropane-based dopamine reuptake inhibitor (DRI) that is derived from methylecgonidine. Troparil is a few times more potent than cocaine as a dopamine reuptake inhibitor, but is less potent as a serotonin reuptake inhibitor, and has a duration spanning a few times longer, since the phenyl ring is directly connected to the tropane ring through a non-hydrolyzable carbon-carbon bond. The lack of an ester linkage removes the local anesthetic action from the drug, so troparil is a pure stimulant. This change in activity also makes troparil slightly less cardiotoxic than cocaine. The most commonly used form of troparil is the tartrate salt, but the hydrochloride and naphthalenedisulfonate salts are also available, as well as the free base.

<span class="mw-page-title-main">Mazindol</span> Stimulant drug and appetite suppressant

Mazindol is a stimulant drug which is used as an appetite suppressant. It was developed by Sandoz-Wander in the 1960s.

<span class="mw-page-title-main">Ethylphenidate</span> Stimulant analog of methylphenidate

Ethylphenidate (EPH) is a central nervous system (CNS) stimulant and a close analog of methylphenidate.

<span class="mw-page-title-main">HDMP-28</span> Stimulant drug

HDMP-28 or methylnaphthidate is a piperidine based stimulant drug, closely related to methylphenidate, but with the benzene ring replaced by naphthalene. It is a potent dopamine reuptake inhibitor, with several times the potency of methylphenidate and a short duration of action, and is a structural isomer of another potent dopamine reuptake inhibitor, N,O-Dimethyl-4-(2-naphthyl)piperidine-3-carboxylate. It has been sold as a designer drug since around 2015.

<span class="mw-page-title-main">2-Benzylpiperidine</span> Chemical compound

2-Benzylpiperidine is a stimulant drug of the arylpiperidine family. It is similar in structure to certain other stimulants such as methylphenidate and desoxypipradrol. However, it is far less potent as a monoamine reuptake inhibitor in comparison. The drug is little used as a stimulant, with its main use being as a synthetic intermediate in the manufacture of other drugs.

<span class="mw-page-title-main">RTI-126</span> Pharmaceutical drug

RTI-126 is a phenyltropane derivative which acts as a potent monoamine reuptake inhibitor and stimulant drug, and has been sold as a designer drug. It is around 5 times more potent than cocaine at inhibiting monoamine reuptake in vitro, but is relatively unselective. It binds to all three monoamine transporters, although still with some selectivity for the dopamine transporter. RTI-126 has a fast onset of effects and short duration of action, and its pharmacological profile in animals is among the closest to cocaine itself out of all the drugs in the RTI series. Its main application in scientific research has been in studies investigating the influence of pharmacokinetics on the abuse potential of stimulant drugs, with its rapid entry into the brain thought to be a key factor in producing its high propensity for development of dependence in animals.

<span class="mw-page-title-main">Tropoxane</span> Chemical compound

Tropoxane (O-1072) is an aryloxytropane derivative drug developed by Organix Inc., which acts as a stimulant and potent dopamine and serotonin reuptake inhibitor. It is an analogue of dichloropane where the amine nitrogen has been replaced by an oxygen ether link, demonstrating that the amine nitrogen is not required for DAT binding and reuptake inhibition.

<span class="mw-page-title-main">RTI-113</span> Chemical compound

RTI(-4229)-113 is a stimulant drug which acts as a potent and fully selective dopamine reuptake inhibitor (DRI). It has been suggested as a possible substitute drug for the treatment of cocaine addiction. "RTI-113 has properties that make it an ideal medication for cocaine abusers, such as an equivalent efficacy, a higher potency, and a longer duration of action as compared to cocaine." Replacing the methyl ester in RTI-31 with a phenyl ester makes the resultant RTI-113 fully DAT specific. RTI-113 is a particularly relevant phenyltropane cocaine analog that has been tested on squirrel monkeys. RTI-113 has also been tested against cocaine in self-administration studies for DAT occupancy by PET on awake rhesus monkeys. The efficacy of cocaine analogs to elicit self-administration is closely related to the rate at which they are administered. Slower onset of action analogs are less likely to function as positive reinforcers than analogues that have a faster rate of onset.

<span class="mw-page-title-main">RTI-51</span> Chemical compound

(–)-2β-Carbomethoxy-3β-(4-bromophenyl)tropane is a semi-synthetic alkaloid in the phenyltropane group of psychostimulant compounds. First publicized in the 1990s, it has not been used enough to have gained a fully established profile. RTI-51 can be expected to have properties lying somewhere in between RTI-31 and RTI-55. It has a ratio of monoamine reuptake inhibition of dopamine > serotonin > norepinephrine which is an unusual balance of effects not produced by other commonly used compounds. It has been used in its 76Br radiolabelled form to map the distribution of dopamine transporters in the brain.

<span class="mw-page-title-main">3,4-Dichloromethylphenidate</span> Stimulant drug

3,4-dichloromethylphenidate is a potent stimulant drug from the phenidate class closely related to methylphenidate. It acts as a potent serotonin-norepinephrine-dopamine reuptake inhibitor with a long duration of action. It has been sold online as a designer drug.

<span class="mw-page-title-main">4-Methylmethylphenidate</span> Stimulant drug

threo-4-Methylmethylphenidate (4-MeTMP) is a stimulant drug related to methylphenidate. It is slightly less potent than methylphenidate and has relatively low efficacy at blocking dopamine reuptake despite its high binding affinity, which led to its investigation as a possible substitute drug for treatment of stimulant abuse. On the other hand, several other simple ring-substituted derivatives of threo-methylphenidate such as the 4-fluoro and 3-chloro compounds are more potent than methylphenidate both in efficacy as dopamine reuptake inhibitors and in animal drug discrimination assays.

<span class="mw-page-title-main">Metaphit</span> Chemical compound

Metaphit is a research chemical that acts as an acylator of NMDARAn, sigma and DAT binding sites in the CNS. It is the m-isothiocyanate derivative of phencyclidine (PCP) and binds irreversibly to the PCP binding site on the NMDA receptor complex. However, later studies suggest the functionality of metaphit is mediated by sites not involved in PCP-induced passive avoidance deficit, and not related to the NMDA receptor complex. Metaphit was also shown to prevent d-amphetamine induced hyperactivity, while significantly depleting dopamine content in the nucleus accumbens. Metaphit was the first acylating ligand used to study the cocaine receptor. It is a structural isomer of the similar research compound fourphit, as it and metaphit both are isothiocyanate substituted derivatives of an analogous scaffold shared with PCP.

<span class="mw-page-title-main">4-Fluoromethylphenidate</span> Chemical compound

4-Fluoromethylphenidate is a stimulant drug that acts as a higher potency dopamine reuptake inhibitor than the closely related methylphenidate.

1-Methyl-3-propyl-4-(<i>p</i>-chlorophenyl)piperidine Chemical compound

1-Methyl-3-propyl-4-(p-chlorophenyl)piperidine is a drug developed by a team led by Alan Kozikowski, which acts as a potent dopamine reuptake inhibitor, and was developed as a potential therapeutic agent for the treatment of cocaine addiction. As with related compounds such as nocaine, it is a structurally simplified derivative of related phenyltropane compounds. Its activity at the serotonin and noradrenaline transporters has not been published, though most related 4-phenylpiperidine derivatives are relatively selective for inhibiting dopamine reuptake over the other monoamine neurotransmitters. While several of its isomers are active, the (3S,4S)-enantiomer is by far the most potent. The rearranged structural isomer 2-[1-(4-chlorophenyl)butyl]piperidine is also a potent inhibitor of dopamine reuptake.

<span class="mw-page-title-main">3-Bromomethylphenidate</span> Chemical compound

3-Bromomethylphenidate (3-Br-MPH) is a compound from the phenidate family, which has reportedly been sold as a designer drug. It showed the most potent binding to the dopamine transporter of a series of ring-substituted methylphenidate derivatives, and produced stimulant effects in animal studies.

References

  1. Klare H, Neudörfl JM, Brandt SD, Mischler E, Meier-Giebing S, Deluweit K, Westphal F, Laussmann T. Analysis of six 'neuro-enhancing' phenidate analogs. Drug Test Anal. 2017 Mar;9(3):423-435. Klare H, Neudörfl JM, Brandt SD, Mischler E, Meier-Giebing S, Deluweit K, et al. (March 2017). "Analysis of six 'neuro-enhancing' phenidate analogs" (PDF). Drug Testing and Analysis. 9 (3): 423–435. doi:10.1002/dta.2161. PMID   28067464.
  2. Luethi D, Kaeser PJ, Brandt SD, Krähenbühl S, Hoener MC, Liechti ME. Pharmacological profile of methylphenidate-based designer drugs. Neuropharmacology. 2018 May 15;134(Pt A):133-140. Luethi D, Kaeser PJ, Brandt SD, Krähenbühl S, Hoener MC, Liechti ME (May 2018). "Pharmacological profile of methylphenidate-based designer drugs" (PDF). Neuropharmacology. 134 (Pt A): 133–140. doi:10.1016/j.neuropharm.2017.08.020. PMID   28823611. S2CID   207233576.
  3. Carlier J, Giorgetti R, Varì MR, Pirani F, Ricci G, Busardò FP. Use of cognitive enhancers: methylphenidate and analogs. Eur Rev Med Pharmacol Sci. 2019 Jan;23(1):3-15. Carlier J, Giorgetti R, Varì MR, Pirani F, Ricci G, Busardò FP (January 2019). "Use of cognitive enhancers: methylphenidate and analogs". European Review for Medical and Pharmacological Sciences. 23 (1): 3–15. doi:10.26355/eurrev_201901_16741. PMID   30657540. S2CID   58643522.
  4. 1 2 3 Froimowitz M, Gu Y, Dakin LA, Nagafuji PM, Kelley CJ, Parrish D, et al. (January 2007). "Slow-onset, long-duration, alkyl analogues of methylphenidate with enhanced selectivity for the dopamine transporter". Journal of Medicinal Chemistry. 50 (2): 219–32. doi:10.1021/jm0608614. PMID   17228864.
  5. Misra M, Shi Q, Ye X, Gruszecka-Kowalik E, Bu W, Liu Z, Schweri MM, Deutsch HM, Venanzi CA (2010). "Quantitative structure-activity relationship studies of threo-methylphenidate analogs". Bioorg Med Chem. 18 (20): 7221–38. doi:10.1016/j.bmc.2010.08.034. PMID   20846865.
  6. Singh, Satendra; et al. (2000). "Chemistry, Design, and Structure-Activity Relationship of Cocaine Antagonists" (PDF). Chem. Rev. 100 (3): 925–1024. doi:10.1021/cr9700538. PMID   11749256.
  7. 1 2 3 4 5 6 7 8 Singh S (March 2000). "Chemistry, design, and structure-activity relationship of cocaine antagonists" (PDF). Chemical Reviews. 100 (3): 925–1024. doi:10.1021/cr9700538. PMID   11749256.
  8. Marchei E, Farré M, Pardo R, Garcia-Algar O, Pellegrini M, Pacifici R, Pichini S (April 2010). "Correlation between methylphenidate and ritalinic acid concentrations in oral fluid and plasma". Clinical Chemistry. 56 (4): 585–92. doi: 10.1373/clinchem.2009.138396 . PMID   20167695.
  9. US 20040180928,Gutman A, Zaltsman I, Shalimov A, Sotrihin M, Nisnevich G, Yudovich L, Fedotev I,"Process for the preparation of dexmethylphenidate hydrochloride",published 16 September 2004, assigned to ISP Investments LLC
  10. US 6441178,Shahriari H, Gerard Z, Potter A,"Resolution of ritalinic acid salt",published 27 August 2002, assigned to Medeva Europe Ltd
  11. Lile JA, Wang Z, Woolverton WL, France JE, Gregg TC, Davies HM, Nader MA (October 2003). "The reinforcing efficacy of psychostimulants in rhesus monkeys: the role of pharmacokinetics and pharmacodynamics". The Journal of Pharmacology and Experimental Therapeutics. 307 (1): 356–66. doi:10.1124/jpet.103.049825. PMID   12954808. S2CID   5654856.
  12. "Compound Summary for CID 85054562". PubChem. U.S. National Library of Medicine.
  13. 1 2 Lapinsky DJ, Velagaleti R, Yarravarapu N, Liu Y, Huang Y, Surratt CK, et al. (January 2011). "Azido-iodo-N-benzyl derivatives of threo-methylphenidate (Ritalin, Concerta): Rational design, synthesis, pharmacological evaluation, and dopamine transporter photoaffinity labeling". Bioorganic & Medicinal Chemistry. 19 (1): 504–12. doi:10.1016/j.bmc.2010.11.002. PMC   3023924 . PMID   21129986.
  14. "ChEMBL1254008". ChEMBL database. European Bioinformatics Institute (EMBL-EBI).
  15. "ChEMBL1255099". ChEMBL database. European Bioinformatics Institute (EMBL-EBI).
  16. Kim DI, Deutsch HM, Ye X, Schweri MM (May 2007). "Synthesis and pharmacology of site-specific cocaine abuse treatment agents: restricted rotation analogues of methylphenidate". Journal of Medicinal Chemistry. 50 (11): 2718–31. doi:10.1021/jm061354p. PMID   17489581.
  17. Jaykaran (October 2010). ""Mean ± SEM" or "Mean (SD)"?". Indian Journal of Pharmacology. 42 (5): 329. doi: 10.4103/0253-7613.70402 . PMC   2959222 . PMID   21206631.
  18. Gatley SJ, Pan D, Chen R, Chaturvedi G, Ding YS (1996). "Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters". Life Sciences. 58 (12): 231–9. doi:10.1016/0024-3205(96)00052-5. PMID   8786705.

Notes

  1. [6] Page #1,006 (82nd page of article) 2nd row, 1st ¶ (orig. ref.: Bonnet, J.-J.; Benmansour, S.; Costenin, J.; Parker, E. M.;Cubeddu, L. X. J. Pharmacol. Exp. Ther.1990, 253, 1206)
  2. [7] Page #1,005 (81st page of article) §VI. Final ¶.
  3. [7] Page #1,006 (82nd page of article) 2nd column, end of first ¶.
  4. [7] Page #1,005 (81st page of article) Final § (§VI.) & page #1,006 (82nd page of article) left (1st) column, first ¶ and figure 51.
  5. [7] Page #1,010 (86th page of article) Table 47, Page #1,007 (83rd page of article) Figure 52
  6. [7] Page #1,010 (86th page of article) 2nd ¶, lines 2, 3 & 5.
  7. [7] Page #1,010 (86th page of article) Table 49, Page #1,007 (83rd page of article) Figure 54
  8. [7] Page #1,010 (86th page of article) Table 48, Page #1,007 (83rd page of article) Figure 53
  9. [7] Page #1,011 (87th page of article) Table 50, Page #1,007 (83rd page of article) Figure 55

Further reading