Adapromine

Last updated
Adapromine
Adapromine.svg
Clinical data
Other namesJP-62, MK-3
Routes of
administration
Oral
Legal status
Legal status
  • In general: ℞ (Prescription only)
Identifiers
  • 1-(Adamantan-1-yl)propan-1-amine
CAS Number
PubChem CID
ChemSpider
CompTox Dashboard (EPA)
Chemical and physical data
Formula C13H23N
Molar mass 193.334 g·mol−1
3D model (JSmol)
  • CCC(C12CC3CC(C1)CC(C3)C2)N

Adapromine is an antiviral drug of the adamantane group related to amantadine (1-aminoadamantane), rimantadine (1-(1-aminoethyl)adamantane), and memantine (1-amino-3,5-dimethyladamantane) that is marketed in Russia for the treatment and prevention of influenza. [1] [2] [3] [4] It is an alkyl analogue of rimantadine and is similar to rimantadine in its antiviral activity but possesses a broader spectrum of action, being effective against influenza viruses of both type A and B. [1] [2] [5] Strains of type A influenza virus with resistance to adapromine and rimantadine and the related drug deitiforine were encountered in Mongolia and the Soviet Union in the 1980s. [6] [7]

Contents

Electroencephalography (EEG) studies of animals suggest that adapromine and related adamantanes including amantadine, bromantane (1-amino-2-bromophenyladamantane), and memantine have psychostimulant-like and possibly antidepressant-like effects, and that these effects may be mediated via catecholaminergic processes. [8] [9] [10] [11] These psychostimulant effects differ qualitatively from those of conventional psychostimulants like amphetamine however, and the adamantane derivatives have been described contrarily as "adaptogens" and as "actoprotectors". [12]

In 2004, it was discovered that amantadine and memantine bind to and act as agonists of the σ1 receptor (Ki = 7.44 μM and 2.60 μM, respectively) and that activation of the σ1 receptor is involved in the dopaminergic effects of amantadine at therapeutically relevant concentrations. [13] These findings might also extend to the other adamantanes such as adapromine, rimantadine, and bromantane and could explain the psychostimulant-like effects of this family of compounds. [13]

Synthesis

The first synthesis of adapromine was disclosed in patents by DuPont published in 1967. [14]

Adapromine synthesis.svg

1-Adamantanecarboxylic acid, as its acid chloride, is treated with a cadmium-modified Grignard reagent, which gives the ketone (6). Oxime formation with hydroxylamine, followed by reduction using lithium aluminium hydride yields adapromine. [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">NMDA receptor</span> Glutamate receptor and ion channel protein found in nerve cells

The N-methyl-D-aspartatereceptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and predominantly Ca2+ ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other two being AMPA and kainate receptors. Depending on its subunit composition, its ligands are glutamate and glycine (or D-serine). However, the binding of the ligands is typically not sufficient to open the channel as it may be blocked by Mg2+ ions which are only removed when the neuron is sufficiently depolarized. Thus, the channel acts as a "coincidence detector" and only once both of these conditions are met, the channel opens and it allows positively charged ions (cations) to flow through the cell membrane. The NMDA receptor is thought to be very important for controlling synaptic plasticity and mediating learning and memory functions.

<span class="mw-page-title-main">Zanamivir</span> Influenza medication

Zanamivir is a medication used to treat and prevent influenza caused by influenza A and influenza B viruses. It is a neuraminidase inhibitor and was developed by the Australian biotech firm Biota Holdings. It was licensed to Glaxo in 1990 and approved in the US in 1999, only for use as a treatment for influenza. In 2006, it was approved for prevention of influenza A and B. Zanamivir was the first neuraminidase inhibitor commercially developed. It is marketed by GlaxoSmithKline under the trade name Relenza as a powder for oral inhalation.

<span class="mw-page-title-main">Rimantadine</span> Drug used to treat influenzavirus A infection

Rimantadine is an orally administered antiviral drug used to treat, and in rare cases prevent, influenzavirus A infection. When taken within one to two days of developing symptoms, rimantadine can shorten the duration and moderate the severity of influenza. Rimantadine can mitigate symptoms, including fever. Both rimantadine and the similar drug amantadine are derivates of adamantane. Rimantadine is found to be more effective than amantadine because when used the patient displays fewer symptoms. Rimantadine was approved by the Food and Drug Administration (FDA) in 1994.

<span class="mw-page-title-main">Amantadine</span> Medication used to treat dyskinesia

Amantadine, sold under the brand name Gocovri among others, is a medication used to treat dyskinesia associated with parkinsonism and influenza caused by type A influenzavirus, though its use for the latter is no longer recommended because of widespread drug resistance. It acts as a nicotinic antagonist, dopamine agonist, and noncompetitive NMDA antagonist. The antiviral mechanism of action is antagonism of the influenzavirus A M2 proton channel, which prevents endosomal escape.

<span class="mw-page-title-main">Adamantane</span> Molecule with three connected cyclohexane rings arranged in the "armchair" configuration

Adamantane is an organic compound with formula C10H16 or, more descriptively, (CH)4(CH2)6. Adamantane molecules can be described as the fusion of three cyclohexane rings. The molecule is both rigid and virtually stress-free. Adamantane is the most stable isomer of C10H16. The spatial arrangement of carbon atoms in the adamantane molecule is the same as in the diamond crystal. This similarity led to the name adamantane, which is derived from the Greek adamantinos (relating to steel or diamond). It is a white solid with a camphor-like odor. It is the simplest diamondoid.

<span class="mw-page-title-main">M2 proton channel</span>

The Matrix-2 (M2) protein is a proton-selective viroporin, integral in the viral envelope of the influenza A virus. The channel itself is a homotetramer, where the units are helices stabilized by two disulfide bonds, and is activated by low pH. The M2 protein is encoded on the seventh RNA segment together with the M1 protein. Proton conductance by the M2 protein in influenza A is essential for viral replication.

<span class="mw-page-title-main">Taribavirin</span> Antiviral drug

Taribavirin is an antiviral drug in Phase III human trials, but not yet approved for pharmaceutical use. It is a prodrug of ribavirin, active against a number of DNA and RNA viruses. Taribavirin has better liver-targeting than ribavirin, and has a shorter life in the body due to less penetration and storage in red blood cells. It is expected eventually to be the drug of choice for viral hepatitis syndromes in which ribavirin is active. These include hepatitis C and perhaps also hepatitis B and yellow fever.

<span class="mw-page-title-main">Treatment of influenza</span> Therapy and pharmacy for the common infectious disease

Treatments for influenza include a range of medications and therapies that are used in response to disease influenza. Treatments may either directly target the influenza virus itself; or instead they may just offer relief to symptoms of the disease, while the body's own immune system works to recover from infection.

<span class="mw-page-title-main">Umifenovir</span> Chemical compound

Umifenovir, sold under the brand name Arbidol, is sold and used as an antiviral medication for influenza in Russia and China. The drug is manufactured by Pharmstandard. It is not approved by the U.S. Food and Drug Administration (FDA) for the treatment or prevention of influenza.

<span class="mw-page-title-main">Bifemelane</span> Antidepressant and cerebral activator drug

Bifemelane (INN) (Alnert, Celeport), or bifemelane hydrochloride (JAN), also known as 4-(O-benzylphenoxy)-N-methylbutylamine, is an antidepressant and cerebral activator that was widely used in the treatment of cerebral infarction patients with depressive symptoms in Japan, and in the treatment of senile dementia as well. It also appears to be useful in the treatment of glaucoma. It has been discontinued in Japan since 1998, when it was removed from the market reportedly for lack of effectiveness.

<span class="mw-page-title-main">Bromantane</span> Stimulant drug

Bromantane, sold under the brand name Ladasten, is an atypical psychostimulant and anxiolytic drug of the adamantane family related to amantadine and memantine which is used in Russia in the treatment of neurasthenia. Although the effects of the bromantane have been determined to be dependent on the dopaminergic and possibly serotonergic neurotransmitter systems, its exact mechanism of action is unknown, and it is distinct in its properties relative to typical psychostimulants such as amphetamine. Because of its unique aspects, bromantane has sometimes been described instead as an actoprotector.

<span class="mw-page-title-main">Cinazepam</span> Benzodiazepine medication

Cinazepam is an atypical benzodiazepine derivative. It produces pronounced hypnotic, sedative, and anxiolytic effects with minimal myorelaxant side effects. In addition, unlike many other benzodiazepine and nonbenzodiazepine hypnotics such as diazepam, flunitrazepam, and zopiclone, cinazepam does not violate sleep architecture, and the continuity of slow-wave sleep and REM sleep are proportionally increased. As such, cinazepam produces a sleep state close to physiological, and for that reason, may be advantageous compared to other, related drugs in the treatment of insomnia and other sleep disorders.

<span class="mw-page-title-main">Riamilovir</span> Chemical compound

Riamilovir is a broad-spectrum antiviral drug developed in Russia through a joint effort of Ural Federal University, Russian Academy of Sciences, Ural Center for Biopharma Technologies and Medsintez Pharmaceutical. It has a novel triazolotriazine core, which represents a new structural class of non-nucleoside antiviral drugs.

<span class="mw-page-title-main">Mecigestone</span> Chemical compound

Mecigestone, also known as pentarane B, as well as 6α-methyl-16α,17α-cyclohexanoprogesterone, 6α-methylcyclohexano[1',2';16,17]pregn-4-ene-3,20-dione, or 17α-acetyl-6α-methyl-16β,24-cyclo-21-norchol-4-en-3-one, is a steroidal progestin that was developed by the Zelinskii Institute of Organic Chemistry of the Russian Academy of Sciences and has been proposed for clinical use as a progestogen but has not been marketed. It is the 6α-methylated analogue of pentarane A, which is also known as D'6-pentarane or pregna-D'6-pentarane.

<span class="mw-page-title-main">Cytestrol acetate</span> Chemical compound

Cytestrol acetate is a steroidal antiestrogen and a cytostatic antineoplastic agent which was developed for the treatment of breast cancer but was never marketed.

<span class="mw-page-title-main">Cortifen</span> Chemical compound

Cortifen, also known as cortiphen or kortifen, as well as fencoron, is a synthetic glucocorticoid corticosteroid and cytostatic antineoplastic agent which was developed in Russia for potential treatment of tumors. It is a hydrophobic chlorphenacyl nitrogen mustard ester of 11-deoxycortisol (cortodoxone).

Actoprotectors or synthetic adaptogens are compounds that enhance an organism's resilience to physical stress without increasing heat output. Actoprotectors are distinct from other performance-enhancing substances in that they increase physical and psychological resilience via non-exhaustive action. The term "actoprotector" is used to describe synthetic and isolated compounds possessing adaptogenic properties. By contrast, the term "adaptogen" is most often use to describe a natural herb as a whole, which can contain hundreds if not thousands of biologically active components.

<span class="mw-page-title-main">Ethylestradiol</span> Chemical compound

Ethylestradiol, or 17α-ethylestradiol, also known as 17α-ethylestra-1,3,5(10)-triene-3,17β-diol, is a synthetic estrogen which was never marketed. It occurs as an active metabolite of the anabolic steroids norethandrolone and ethylestrenol formed via aromatase and is believed to be responsible for the estrogenic effects of norethandrolone and ethylestrenol. The 3-methyl ether of ethylestradiol has been used as an intermediate in the synthesis of certain 19-nortestosterone anabolic steroids.

<span class="mw-page-title-main">Megestrol caproate</span> Chemical compound

Megestrol caproate, abbreviated as MGC, is a progestin medication which was never marketed. It was developed in Russia in 2002. In animals, MGC shows 10-fold higher progestogenic activity compared to progesterone when both are administered via subcutaneous injection. In addition, MGC has no androgenic, anabolic, or estrogenic activity. The medication was suggested as a potential contraceptive and therapeutic agent.

<span class="mw-page-title-main">4-Aminoacetanilide</span> Chemical compound

4-Aminoacetanilide or paracetamin is a chemical compound which is a amino derivative of acetanilide and para-isomer of aminoacetanilide. There are two other isomers of aminoacetanilide, 2-aminoacetanilide and 3-aminoacetanilide. Aminoacetanilide derivatives are important synthetic intermediates in heterocyclic and aromatic synthesis. These derivatives have found applications in pharmaceutical industry and dyes and pigment industry.

References

  1. 1 2 Spasov AA, Khamidova TV, Bugaeva LI, Morozov IS (2000). "Adamantane derivatives: Pharmacological and toxicological properties (review)". Pharmaceutical Chemistry Journal. 34 (1): 1–7. doi:10.1007/BF02524549. ISSN   0091-150X. S2CID   41620120.
  2. 1 2 Lavrova LN, Indulen MK, Ryazantseva GM, Korytnyi VS, Yashunskii VG (1990). "Synthesis and biological activity of some 1-hydroxy-3-aminoalkyladamantanes and their derivatives". Pharmaceutical Chemistry Journal. 24 (1): 35–39. doi:10.1007/BF00769383. ISSN   0091-150X. S2CID   8544357.
  3. Gavrilova NA, Frolenko TA, Semichenko ES, Suboch GA (2010). "Synthesis of naphtho[1,2-d]imidazoles containing an adamantyl fragment". Russian Journal of Organic Chemistry. 46 (5): 777–778. doi:10.1134/S1070428010050349. ISSN   1070-4280. S2CID   94469430.
  4. Rodionov VN, Sklyarova AS, Shamota TV, Schreiner PR, Fokin AA (2011). "Selective reductive dimerization of homocubane series oximes". Russian Journal of Organic Chemistry. 47 (11): 1695–1702. doi:10.1134/S1070428011110078. ISSN   1070-4280. S2CID   94472143.
  5. Leneva IA, Glushkov RG, Gus'kova TA (2004). "Drugs for chemotherapy and prophylaxis of influenza: Mechanisms, efficacy, and safety (a review)". Pharmaceutical Chemistry Journal. 38 (11): 590–596. doi:10.1007/s11094-005-0036-9. ISSN   0091-150X. S2CID   9442971.
  6. Kozeletskaia KN, Grinbaum EB, Zhamsrangiĭn M, Burmistrova VV, Kiselev OI (1990). "[The isolation and study of the properties of current influenza A viruses (H1N1) with a natural resistance to remantadine]". Voprosy Virusologii (in Russian). 35 (4): 289–293. PMID   1701588.
  7. Kozeletskaia KN, Karginov VA, Kiseleva OI, Mishin VP, Grinbaum EB, Burmistrova VV (1995). "[The origin of resistance to chemicals of naturally occurring isolates of influenza A virus]". Vestnik Rossiiskoi Akademii Meditsinskikh Nauk (in Russian) (9): 36–41. PMID   7580412.
  8. Krapivin SV, Sergeeva SA, Morozov IS (1992). "[A spectral analysis of the effect of adapromine on brain bioelectrical activity]". Eksperimental'naia i Klinicheskaia Farmakologiia (in Russian). 55 (3): 6–8. PMID   1458170.
  9. Krapivin SV, Sergeeva SA, Morozov IS (1998). "Comparative analysis of the effects of adapromine, midantane, and bromantane on bioelectrical activity of rat brain". Bulletin of Experimental Biology and Medicine. 125 (2): 151–155. doi:10.1007/BF02496845. ISSN   0007-4888. S2CID   21940190.
  10. Krapivin SV, Voronina TA (1995). "[Comparative quantitative pharmacological-EEG analysis of the effects of psychostimulants]". Vestnik Rossiiskoi Akademii Meditsinskikh Nauk (in Russian) (6): 7–16. PMID   7627000.
  11. Krapivin SV, Sergeeva SA, Morozov IS, Dulpe IU (1991). "Spectral analysis of the effect of midantane on bioelectrical activity of the rat brain". Bulletin of Experimental Biology and Medicine. 112 (1): 975–978. doi:10.1007/BF00841147. ISSN   0007-4888. S2CID   22469427.
  12. Morozov IS, Ivanova IA, Lukicheva TA (2001). "Actoprotector and Adaptogen Properties of Adamantane Derivatives (A Review)". Pharmaceutical Chemistry Journal. 35 (5): 235–238. doi:10.1023/A:1011905302667. ISSN   0091-150X. S2CID   29475883.
  13. 1 2 Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E (April 2004). "Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine". The European Journal of Neuroscience. 19 (8): 2212–2220. doi:10.1111/j.0953-816X.2004.03297.x. PMID   15090047. S2CID   19479968.
  14. 1 2 USpatent 3352912,Prichard WW,"Adamantanes and tricyclo[4. 3. 1. 1 3.8] undecanes",issued 1967-11-14, assigned to EI Du Pont de Nemours and Co
  15. Aldrich PE, Hermann EC, Meier WE, Paulshock M, Prichard WW, Snyder JA, et al. (June 1971). "Antiviral agents. 2. Structure-activity relationships of compounds related to 1-adamantanamine". Journal of Medicinal Chemistry. 14 (6): 535–543. doi:10.1021/jm00288a019. PMID   5091970.