Influenza A virus subtype H7N7 | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Negarnaviricota |
Class: | Insthoviricetes |
Order: | Articulavirales |
Family: | Orthomyxoviridae |
Genus: | Alphainfluenzavirus |
Species: | |
Serotype: | Influenza A virus subtype H7N7 |
Influenza (flu) |
---|
Influenza A virus subtype H7N7 (A/H7N7) is a subtype of Influenza A virus, a genus of Orthomyxovirus, the viruses responsible for influenza. Highly pathogenic strains (HPAI) and low pathogenic strains (LPAI) exist. H7N7 can infect humans, birds, pigs, seals, and horses in the wild; and has infected mice in laboratory studies. This unusual zoonotic potential represents a pandemic threat.
In 2003, 89 people in the Netherlands were confirmed to have been infected by H7N7 following an outbreak in poultry on approximately 255 farms. One death was recorded – a veterinarian who had been testing chickens for the virus – and all infected flocks were culled. Most affected people had mild symptoms including conjunctivitis. [1] [2] Antibodies were found in over half of 500 people tested according to the final official report by the Dutch government:
As at least 50% of the people exposed to infected poultry had H7 antibodies detectable with the modified assay, it was estimated that avian influenza A/H7N7 virus infection occurred in at least 1000, and perhaps as many as 2000 people. The seroprevalence of H7 antibodies in people without contact with infected poultry, but with close household contact with an infected poultry worker, was 59%. This suggests that the population at risk for avian influenza was not limited to those with direct contact with infected poultry, and that person to person transmission may have occurred on a large scale. [3] Final analysis of Dutch avian influenza outbreaks reveals much higher levels of transmission to humans than previously thought. [4]
In August 2006, low pathogenic (LP) H7N7 was found during routine testing at a poultry farm in Voorthuizen in the central Netherlands. As a precautionary measure, 25,000 chickens were culled from Voorthuizen and surrounding farms. [5]
In June 2008, high pathogenic (HP) H7N7 was confirmed on a 25,000-bird laying unit at Shenington, England; probably derived from a pre-existing low pathogenic variety. Farmers Guardian reported a 2.5 per cent increased mortality in one shed and a reduction in egg production recorded two weeks before numerous deaths on 2 June that led to the diagnosis of HP H7N7 on 4 June. [6]
In October 2009, high pathogenic (HP) H7N7 was confirmed on a farm in Almoguera, Guadalajara, Spain. Hong Kong announced that it would suspend the import of poultry from Spain. [7]
In August 2013, high pathogenic (HP) H7N7 was found in markets in Wenzhou, Zhejiang province in China when testing for H7N9. [8]
In July 2015, high pathogenic (HP) H7N7 was confirmed on a poultry farm in Lancashire, England. [9]
In August 2020, H7N7 was confirmed on a free range farm in Lethbridge, Victoria. [10]
Influenza A virus (IAV) is the only species of the genus Alphainfluenzavirus of the virus family Orthomyxoviridae. It is a pathogen with strains that infect birds and some mammals, as well as causing seasonal flu in humans. Mammals in which different strains of IAV circulate with sustained transmission are bats, pigs, horses and dogs; other mammals can occasionally become infected.
Avian influenza, also known as avian flu or bird flu, is a disease caused by the influenza A virus, which primarily affects birds but can sometimes affect mammals including humans. Wild aquatic birds are the primary host of the influenza A virus, which is enzootic in many bird populations.
Influenza A virus subtype H5N1 (A/H5N1) is a subtype of the influenza A virus, which causes the disease avian influenza. It is enzootic in many bird populations, and also panzootic. A/H5N1 virus can also infect mammals that have been exposed to infected birds; in these cases, symptoms are frequently severe or fatal.
The global spread of H5N1 influenza in birds is considered a significant pandemic threat. While other H5N1 influenza strains are known, they are significantly different on a genetic level from a highly pathogenic, emergent strain of H5N1, which was able to achieve hitherto unprecedented global spread in 2008. The H5N1 strain is a fast-mutating, highly pathogenic avian influenza virus (HPAI) found in multiple bird species. It is both epizootic and panzootic. Unless otherwise indicated, "H5N1" in this timeline refers to the 2008 highly pathogenic strain of H5N1.
Transmission and infection of H5N1 from infected avian sources to humans has been a concern since the first documented case of human infection in 1997, due to the global spread of H5N1 that constitutes a pandemic threat.
H5 N2 is a subtype of the species Influenzavirus A. The subtype infects a wide variety of birds, including chickens, ducks, turkeys, falcons, and ostriches. Affected birds usually do not appear ill, and the disease is often mild as avian influenza viral subtypes go. Some variants of the subtype are much more pathogenic than others, and outbreaks of "high-path" H5N2 result in the culling of thousands of birds in poultry farms from time to time. It appears that people who work with birds can be infected by the virus, but suffer hardly any noticeable health effects. Even people exposed to the highly pathogenic H5N2 variety that killed ostrich chicks in South Africa only seem to have developed conjunctivitis, or a perhaps a mild respiratory illness. There is no evidence of human-to-human spread of H5N2. On November 12, 2005 it was reported that a falcon was found to have H5N2. On June 5, 2024, the first confirmed human case of H5N2 was reported in Mexico.
Influenza A virus subtype H7N2 (A/H7N2) is a subtype of the species Influenza A virus. This subtype is one of several sometimes called bird flu virus. H7N2 is considered a low pathogenicity avian influenza (LPAI) virus. With this in mind, H5 & H7 influenza viruses can re-assort into the Highly Pathogenic variant if conditions are favorable.
H5N8 is a subtype of the influenza A virus and is highly lethal to wild birds and poultry. H5N8 is typically not associated with humans. However, seven people in Russia were found to be infected in 2021, becoming the first documented human cases.
The genetic structure of H5N1, a highly pathogenic avian influenza virus, is characterized by a segmented RNA genome consisting of eight gene segments that encode for various viral proteins essential for replication, host adaptation, and immune evasion.
The global spread of H5N1 in birds is considered a significant pandemic threat.
The global spread of H5N1 in birds is considered a significant pandemic threat.
Fujian flu refers to flu caused by either a Fujian human flu strain of the H3N2 subtype of the Influenza A virus or a Fujian bird flu strain of the H5N1 subtype of the Influenza A virus. These strains are named after Fujian, a coastal province in Southeast China.
The 2007 Bernard Matthews H5N1 outbreak was an occurrence of avian influenza in England caused by the H5N1 subtype of Influenza virus A that began on 30 January 2007. The infection affected poultry at one of Bernard Matthews' farms in Holton in Suffolk. It was the third instance of H5N1-subtype detected in the United Kingdom and a range of precautions were instituted to prevent spread of the disease including a large cull of turkeys, the imposition of segregation zones, and a disinfection programme for the plant.
H5N1 influenza virus is a type of influenza A virus which mostly infects birds. H5N1 flu is a concern due to the fact that its global spread may constitute a pandemic threat. The yardstick for human mortality from H5N1 is the case-fatality rate (CFR); the ratio of the number of confirmed human deaths resulting from infection of H5N1 to the number of those confirmed cases of infection with the virus. For example, if there are 100 confirmed cases of a disease and 50 die as a consequence, then the CFR is 50%. The case fatality rate does not take into account cases of a disease which are unconfirmed or undiagnosed, perhaps because symptoms were mild and unremarkable or because of a lack of diagnostic facilities. The Infection Fatality Rate (IFR) is adjusted to allow for undiagnosed cases.
The global spread of H5N1 in birds is considered a significant pandemic threat.
Influenza, commonly known as the flu, is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin one to four days after exposure to the virus and last for about two to eight days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia from the virus or a subsequent bacterial infection. Other complications include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.
Influenza A virus subtype H7N9 (A/H7N9) is a subtype of the influenza A virus, which causes influenza (flu), predominantly in birds. It is enzootic in many bird populations. The virus can spread rapidly through poultry flocks and among wild birds; it can also infect humans that have been exposed to infected birds.
In the early 2020s, an ongoing outbreak of avian influenza subtype H5N8 has been occurring at poultry farms and among wild bird populations in several countries and continents, leading to the subsequent cullings of millions of birds to prevent a pandemic similar to that of the H5N1 outbreak in 2008. The first case of human transmission of avian flu, also known as bird flu, was reported by Russian authorities in February 2021, as several poultry farm workers tested positive for the virus.
Since 2020, outbreaks of avian influenza subtype H5N1 have been occurring, with cases reported from every continent except Australia as of January 2025. Some species of wild aquatic birds act as natural asymptomatic carriers of a large variety of influenza A viruses, which can infect poultry, other bird species, mammals and humans if they come into close contact with infected feces or contaminated material, or by eating infected birds. In late 2023, H5N1 was discovered in the Antarctic for the first time, raising fears of imminent spread throughout the region, potentially leading to a "catastrophic breeding failure" among animals that had not previously been exposed to avian influenza viruses. The main virus involved in the global outbreak is as H5N1 clade 2.3.4.4b, genetic diversification of which with other clades has seen an evolution in the ability to cause significant outbreaks in a broader range of species, mammals included.