Influenza A virus subtype H3N8 | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Negarnaviricota |
Class: | Insthoviricetes |
Order: | Articulavirales |
Family: | Orthomyxoviridae |
Genus: | Alphainfluenzavirus |
Species: | |
Serotype: | Influenza A virus subtype H3N8 |
H3N8 is a subtype of the species Influenza A virus that is endemic in birds, horses and dogs. It is the main cause of equine influenza and is also known as equine influenza virus. In 2011, it was reported to have been found in seals. [1] Cats have been experimentally infected with the virus, leading to clinical signs, shedding of the virus and infection of other cats. [2] In 2022 and 2023, three people in China were infected with H3N8, [3] with one fatality, marking the first time a human has died from this strain of flu. [4]
Equine influenza (EI) is a highly contagious respiratory disease of horses and related animals such as donkeys, mules and zebras (collectively known as equines). Equine influenza is caused by a type A influenza virus in the family Orthomyxoviridae (genus Influenzavirus). Transmission of the equine influenza virus (EIV) to humans has not occurred during outbreaks of the disease in horses. A lineage of H3N8 has been found to infect humans, with the first two cases in China in April and May 2022, [5] and a third case in March 2023, which was the first death. [3]
In 1963, the H3N8 (A/equine/2/Miami/63) subtype created an epidemic of equine influenza in Miami and subsequently spread throughout North and South America and Europe, creating massive outbreaks during 1964 and 1965. Since 1963, the H3N8 virus has drifted along a single lineage at a rate of 0.8 amino acid substitutions per year. Between 1978 and 1981, there were widespread epidemics of the A/equine/2 strain throughout the US and Europe despite the development of vaccines. Since the late 1980s, evolution of the H3N8 virus has diverged into two families: an "American-like" lineage and a "European-like" lineage. [6] A 1997 study found H3N8 was responsible for over one quarter of the influenza infections in wild ducks. [7]
H3N8 has been suggested as a possible cause of the 1889–1890 pandemic in humans, and also another epidemic in 1898–1900. [8] [9] Before the identification of H3N8 as a possible cause of the 1889 pandemic, the H2N2 subtype was suggested. [10] [11] [12] At this point, it is not possible to identify the virus for either the 1889 or 1900 outbreak with certainty. [13]
Equine influenza virus (H3N8) can be spread by a few different routes. The ultimate source of the virus is respiratory tract secretions. Coughing horses can release the virus into the air, where it can spread up to 30–50 metres. It can also be spread by direct contact between horses, or indirectly via a person's hands or clothing, or on inanimate objects (e.g. buckets, tack, twitches). However, the virus doesn't survive outside of a horse for long [14] The virus is delicate within the environment and easily killed by heat, cold, desiccation, and disinfectants. [15] The virus multiplies in epithelial cells of upper respiratory tract. Dispersed by aerosol droplets when horse coughs or exhales. The virus can survive in the environment, on different surfaces, for up to 48 hours. Spread of the disease has been associated with the movement of people, pets, horse equipment and tack where proper biosecurity procedures have not been followed [16]
Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. [17]
The time from when a horse gets exposed to the time when it gets sick. It is quite short for equine influenza: typically 1–3 days and up to 7 days. This makes disease control easier, as infected horses can be identified sooner, meaning that appropriate control measures can be enacted more quickly. Diseases that have very long incubation periods can be more difficult to control. [14]
Aerosolized influenza virus is inhaled and embeds in the respiratory mucosa, of the upper and lower respiratory tract. The virus is attracted to the glycoproteins and mucopolysaccharides of the mucus coating the respiratory mucosa. If the infecting dose of virus is high, abundant viral neuraminidase breaks down the mucosal layer, allowing access of the virus to the underlying epithelial cells. The virus then attaches to epithelial cells through binding of the hemagglutinin spike to the N-acetylneuraminic acid receptor on the cell. The virus then enters the cell by endocytosis into the cell cytoplasm where it replicates to produce new virions that are released back into the respiratory tract by budding from the infected cell. The virus disperses throughout the trachea and bronchial tree within 3 days, causing hyperemia, edema, necrosis, desquamation, and focal erosion. Viremia is rare, but is possible if the virus crosses the basement membrane and enters the circulation, potentially causing inflammation of skeletal and cardiac muscle (myositis and myocarditis), encephalitic signs, and limb edema [6]
Fever of 102.5–105.0 °F (39.2–40.6 °C), frequent dry cough for several weeks, ‘drippy’ nose with discharge and secondary bacterial infection are some of the clinical signs of Equine influenza virus infection. isolation of influenza virus from nasopharyngeal and or large rise in antibody titer in equine-1 or 2 serum can be used as diagnosis in horses. Other clinical findings may include a serous or light mucoid nasal discharge, epiphora, tender but rarely swollen submandibular lymph nodes, hyperemia of nasal and conjunctival mucosa, tachypnea, tachycardia, limb edema, muscle soreness and stiffness. [15]
The length of time a horse can spread the virus after being infected. It is a very important concept, because horses can still infect other horses after they have gotten over their own illness. Viruses that are shed for long periods of time after a horse gets better are much harder to control. Horses tend to be most infectious (i.e. shedding the most virus) in the first 24–48 hours after they develop a fever, but they can shed the virus for up to 7–10 days after their signs of illness disappear. [14]
Influenza A virus (IAV) is a pathogen with strains that infect birds and some mammals, as well as causing seasonal flu in humans. Mammals in which different strains of IAV circulate with sustained transmission are bats, pigs, horses and dogs; other mammals can occasionally become infected.
Avian influenza, also known as avian flu or bird flu, is a disease caused by the influenza A virus (IAV) which primarily affects birds but can sometimes affect mammals including humans. Wild aquatic birds are the primary host of Influenza A virus (IAV), which is endemic in many bird populations.
Orthomyxoviridae is a family of negative-sense RNA viruses. It includes seven genera: Alphainfluenzavirus, Betainfluenzavirus, Gammainfluenzavirus, Deltainfluenzavirus, Isavirus, Thogotovirus, and Quaranjavirus. The first four genera contain viruses that cause influenza in birds and mammals, including humans. Isaviruses infect salmon; the thogotoviruses are arboviruses, infecting vertebrates and invertebrates. The Quaranjaviruses are also arboviruses, infecting vertebrates (birds) and invertebrates (arthropods).
Measles morbillivirus(MeV), also called measles virus (MV), is a single-stranded, negative-sense, enveloped, non-segmented RNA virus of the genus Morbillivirus within the family Paramyxoviridae. It is the cause of measles. Humans are the natural hosts of the virus; no animal reservoirs are known to exist.
Influenza A virus subtype H5N1 (A/H5N1) is a subtype of the influenza A virus, which causes influenza (flu), predominantly in birds. It is enzootic in many bird populations, and also panzootic. A/H5N1 virus can also infect mammals that have been exposed to infected birds; in these cases, symptoms are frequently severe or fatal.
Swine influenza is an infection caused by any of several types of swine influenza viruses. Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) refers to any strain of the influenza family of viruses that is endemic in pigs. As of 2009, identified SIV strains include influenza C and the subtypes of influenza A known as H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3.
In virology, influenza A virus subtype H1N1 (A/H1N1) is a subtype of influenza A virus. Major outbreaks of H1N1 strains in humans include the 1918 Spanish flu pandemic, the 1977 Russian flu pandemic and the 2009 swine flu pandemic. It is an orthomyxovirus that contains the glycoproteins hemagglutinin (H) and neuraminidase (N), antigens whose subtypes are used to classify the strains of the virus as H1N1, H1N2 etc. Hemagglutinin causes red blood cells to clump together and binds the virus to the infected cell. Neuraminidase is a type of glycoside hydrolase enzyme which helps to move the virus particles through the infected cell and assist in budding from the host cells.
An influenza pandemic is an epidemic of an influenza virus that spreads across a large region and infects a large proportion of the population. There have been six major influenza epidemics in the last 140 years, with the 1918 flu pandemic being the most severe; this is estimated to have been responsible for the deaths of 50–100 million people. The 2009 swine flu pandemic resulted in under 300,000 deaths and is considered relatively mild. These pandemics occur irregularly.
Canine influenza is influenza occurring in canine animals. Canine influenza is caused by varieties of influenzavirus A, such as equine influenza virus H3N8, which was discovered to cause disease in canines in 2004. Because of the lack of previous exposure to this virus, dogs have no natural immunity to it. Therefore, the disease is rapidly transmitted between individual dogs. Canine influenza may be endemic in some regional dog populations of the United States. It is a disease with a high morbidity but a low incidence of death.
Pneumococcal pneumonia is a type of bacterial pneumonia that is caused by Streptococcus pneumoniae (pneumococcus). It is the most common bacterial pneumonia found in adults, the most common type of community-acquired pneumonia, and one of the common types of pneumococcal infection. The estimated number of Americans with pneumococcal pneumonia is 900,000 annually, with almost 400,000 cases hospitalized and fatalities accounting for 5-7% of these cases.
Flu is an infectious disease of birds and mammals caused by RNA viruses of the family Orthomyxoviridae, the influenza viruses.
Transmission and infection of H5N1 from infected avian sources to humans has been a concern since the first documented case of human infection in 1997, due to the global spread of H5N1 that constitutes a pandemic threat.
Influenza A virus subtype H7N7 (A/H7N7) is a subtype of Influenza A virus, a genus of Orthomyxovirus, the viruses responsible for influenza. Highly pathogenic strains (HPAI) and low pathogenic strains (LPAI) exist. H7N7 can infect humans, birds, pigs, seals, and horses in the wild; and has infected mice in laboratory studies. This unusual zoonotic potential represents a pandemic threat.
Influenza A virus subtype H9N2 (A/H9N2) is a subtype of the species Influenza A virus . Since 1998 a total of 86 cases of human infection with H9N2 viruses have been reported.
Influenza A virus subtype H7N2 (A/H7N2) is a subtype of the species Influenza A virus. This subtype is one of several sometimes called bird flu virus. H7N2 is considered a low pathogenicity avian influenza (LPAI) virus. With this in mind, H5 & H7 influenza viruses can re-assort into the Highly Pathogenic variant if conditions are favorable.
Equine influenza is the disease caused by strains of influenza A that are enzootic in horse species. Equine influenza occurs globally, previously caused by two main strains of virus: equine-1 (H7N7) and equine-2 (H3N8). The World Organisation for Animal Health now considers H7N7 strains likely to be extinct since these strains have not been isolated for over 20 years. Predominant international circulating H3N8 strains are Florida sublineage of the American lineage; clade 1 predominates in the Americas and clade 2 in Europe.. The disease has a nearly 100% infection rate in an unvaccinated horse population with no prior exposure to the virus.
H5N1 genetic structure is the molecular structure of the H5N1 virus's RNA.
Bovine alphaherpesvirus 1 (BoHV-1) is a virus of the family Herpesviridae and the subfamily Alphaherpesvirinae, known to cause several diseases worldwide in cattle, including rhinotracheitis, vaginitis, balanoposthitis, abortion, conjunctivitis, and enteritis. BoHV-1 is also a contributing factor in shipping fever, also known as bovine respiratory disease (BRD). It is spread horizontally through sexual contact, artificial insemination, and aerosol transmission and it may also be transmitted vertically across the placenta. BoHV-1 can cause both clinical and subclinical infections, depending on the virulence of the strain. Although these symptoms are mainly non-life-threatening it is an economically important disease as infection may cause a drop in production and affect trade restrictions. Like other herpesviruses, BoHV-1 causes a lifelong latent infection and sporadic shedding of the virus. The sciatic nerve and trigeminal nerve are the sites of latency. A reactivated latent carrier is normally the source of infection in a herd. The clinical signs displayed are dependent on the virulence of the strain. There is a vaccine available which reduces the severity and incidence of disease. Some countries in Europe have successfully eradicated the disease by applying a strict culling policy.
Influenza, commonly known as "the flu" or just "flu", is an infectious disease caused by influenza viruses. Symptoms range frwom mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms begin one to four days after exposure to the virus and last for about two to eight days. Diarrhea and vomiting can occur, particularly in children. Influenza may progress to pneumonia from the virus or a subsequent bacterial infection. Other complications include acute respiratory distress syndrome, meningitis, encephalitis, and worsening of pre-existing health problems such as asthma and cardiovascular disease.
In parasitology and epidemiology, a host switch is an evolutionary change of the host specificity of a parasite or pathogen. For example, the human immunodeficiency virus used to infect and circulate in non-human primates in West-central Africa, but switched to humans in the early 20th century.