ABT-202

Last updated
ABT-202
ABT-202.svg
Identifiers
  • (R)-1-(Pyridin-3-yl)pyrrolidin-3-amine
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C9H13N3
Molar mass 163.219 g·mol−1
3D model (JSmol)
  • N[C@@H]1CCN(C2=CC=CN=C2)C1
  • InChI=1S/C9H13N3/c10-8-3-5-12(7-8)9-2-1-4-11-6-9/h1-2,4,6,8H,3,5,7,10H2/t8-/m1/s1 X mark.svgN
  • Key:LVGMMVAWLISWJD-MRVPVSSYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

ABT-202 is a drug developed by Abbott, which acts as an agonist at neural nicotinic acetylcholine receptors and has been researched for use as an analgesic, although it has not passed clinical trials. [1] [2] [3]

Related Research Articles

<span class="mw-page-title-main">Acetylcholine</span> Organic chemical and neurotransmitter

Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.

<span class="mw-page-title-main">Conotoxin</span> Group of neurotoxins

A conotoxin is one of a group of neurotoxic peptides isolated from the venom of the marine cone snail, genus Conus.

<span class="mw-page-title-main">Epibatidine</span> Toxic chemical from some poison dart frogs

Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine is the first observed example of a chlorinated alkaloid remains controversial, due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.

<span class="mw-page-title-main">Tropisetron</span> Chemical compound

Tropisetron is a serotonin 5-HT3 receptor antagonist used mainly as an antiemetic to treat nausea and vomiting following chemotherapy, although it has been used experimentally as an analgesic in cases of fibromyalgia.

<span class="mw-page-title-main">Desformylflustrabromine</span> Chemical compound

Desformylflustrabromine (dFBr) is a monomethyltryptamine derivative which was first isolated as a secondary metabolite of the marine bryozoan Flustra foliacea.

A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine.

The alpha-4 beta-2 nicotinic receptor, also known as the α4β2 receptor, is a type of nicotinic acetylcholine receptor implicated in learning, consisting of α4 and β2 subunits. It is located in the brain, where activation yields post- and presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Alpha-7 nicotinic receptor</span>

The alpha-7 nicotinic receptor, also known as the α7 receptor, is a type of nicotinic acetylcholine receptor implicated in long-term memory, consisting entirely of α7 subunits. As with other nicotinic acetylcholine receptors, functional α7 receptors are pentameric [i.e., (α7)5 stoichiometry].

<span class="mw-page-title-main">CHRNB3</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit beta-3 is a protein that in humans is encoded by the CHRNB3 gene. This gene has been identified as a candidate for predisposition to tobacco dependence.

<span class="mw-page-title-main">CHRNA9</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit alpha-9, also known as nAChRα9, is a protein that in humans is encoded by the CHRNA9 gene. The protein encoded by this gene is a subunit of certain nicotinic acetylcholine receptors (nAchR).

<span class="mw-page-title-main">Rivanicline</span> Chemical compound

Rivanicline is a drug which acts as a partial agonist at neural nicotinic acetylcholine receptors. It is subtype-selective, binding primarily to the α4β2 subtype. It has nootropic effects and was originally developed as a potential treatment for Alzheimer's disease, but a second action that was subsequently found was that it inhibits the production of Interleukin-8 and thus produces an antiinflammatory effect, and so it has also been developed as a potential treatment for ulcerative colitis. Rivanicline also has stimulant and analgesic actions which are thought to be mediated through stimulation of noradrenaline release, and so it could also have other applications. It has been identified as constituent of tobacco as well.

<span class="mw-page-title-main">Tebanicline</span> Chemical compound

Tebanicline is a potent synthetic nicotinic (non-opioid) analgesic drug developed by Abbott. It was developed as a less toxic analog of the potent poison dart frog-derived compound epibatidine, which is about 200 times stronger than morphine as an analgesic, but produces extremely dangerous toxic side effects. Like epibatidine, tebanicline showed potent analgesic activity against neuropathic pain in both animal and human trials, but with far less toxicity than its parent compound. It acts as a partial agonist at neuronal nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes.

<span class="mw-page-title-main">Epiboxidine</span> Chemical compound

Epiboxidine is a chemical compound which acts as a partial agonist at neural nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes. It was developed as a less toxic analogue of the potent frog-derived alkaloid epibatidine, which is around 200 times stronger than morphine as an analgesic but produces extremely dangerous toxic nicotinic side effects.

<span class="mw-page-title-main">ABT-418</span> Chemical compound

ABT-418 is a drug developed by Abbott, that has nootropic, neuroprotective and anxiolytic effects, and has been researched for treatment of both Alzheimer's disease and ADHD. It acts as an agonist at neural nicotinic acetylcholine receptors, subtype-selective binding with high affinity to the α4β2, α7/5-HT3, and α2β2 nicotinic acetylcholine receptors but not α3β4 receptors ABT-418 was reasonably effective for both applications and fairly well tolerated, but produced some side effects, principally nausea, and it is unclear whether ABT-418 itself will proceed to clinical development or if another similar drug will be used instead.

<span class="mw-page-title-main">Pozanicline</span> Synthetic nootropic drug

Pozanicline is a drug developed by Abbott, that has nootropic and neuroprotective effects. Animal studies suggested it useful for the treatment of ADHD and subsequent human trials have shown ABT-089 to be effective for this application. It binds with high affinity subtype-selective to the α4β2 nicotinic acetylcholine receptors and has partial agonism to the α6β2 subtype, but not the α7 and α3β4 subtypes familiar to nicotine. It has particularly low tendency to cause side effects compared to other drugs in the class.

<span class="mw-page-title-main">Neramexane</span> Chemical compound

Neramexane is a drug related to memantine, which acts as an NMDA antagonist and has neuroprotective effects. It is being developed for various possible applications, including treatment of tinnitus, Alzheimer's disease, drug addiction and as an analgesic. Animal studies have also suggested antidepressant and nootropic actions, so there are a wide range of potential applications this drug may be used for. It also acts as a nicotinic acetylcholine receptor antagonist.

Sazetidine A (AMOP-H-OH) is a drug which acts as a subtype selective partial agonist at α4β2 neural nicotinic acetylcholine receptors, acting as an agonist at (α4)2(β2)3 pentamers, but as an antagonist at (α4)3(β2)2 pentamers. It has potent analgesic effects in animal studies comparable to those of epibatidine, but with less toxicity, and also has antidepressant action.

<span class="mw-page-title-main">A-366,833</span> Chemical compound

A-366,833 is a drug developed by Abbott, which acts as an agonist at neural nicotinic acetylcholine receptors selective for the α4β2 subtype, and has been researched for use as an analgesic, although it has not passed clinical trials. Its structure has a nicotinonitrile (3-cyanopyridine) core bound through C5 to the N6 of (1R,5S)-3,6-diazabicyclo[3.2.0]heptane.

<span class="mw-page-title-main">TC-1698</span> Chemical compound

TC-1698 is a drug developed by Targacept which acts as a partial agonist for the α7 subtype of neural nicotinic acetylcholine receptors. It has neuroprotective effects in animal studies, and has been used as a lead compound to find further potent derivatives.

<span class="mw-page-title-main">6-Chloronicotine</span> Chemical compound

6-Chloronicotine is a drug which acts as an agonist at neural nicotinic acetylcholine receptors. It substitutes for nicotine in animal studies with around twice the potency, and shows antinociceptive effects.

References

  1. Jain KK (January 2004). "Modulators of nicotinic acetylcholine receptors as analgesics". Current Opinion in Investigational Drugs. 5 (1): 76–81. PMID   14983978.
  2. Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F (June 2007). "Central nicotinic receptors: structure, function, ligands, and therapeutic potential". ChemMedChem. 2 (6): 746–67. doi:10.1002/cmdc.200600207. PMID   17295372. S2CID   34763474.
  3. Xu N, Kim GE, Gregg H, Wagdy A, Swaine BA, Chang MS, El-Shourbagy TA (September 2004). "Automated 96-well liquid-liquid back extraction liquid chromatography-tandem mass spectrometry method for the determination of ABT-202 in human plasma". Journal of Pharmaceutical and Biomedical Analysis. 36 (1): 189–95. doi:10.1016/j.jpba.2004.05.013. PMID   15351065.