Phenylpropylaminopentane

Last updated

Phenylpropylaminopentane
Phenylpropylaminopentane.svg
Phenylpropylaminopentane.png
Clinical data
Other namesPPAP; (–)-PPAP; (2R)-PPAP; MK-306; α,N-Dipropylphenethylamine; α-Desmethyl-α,N-dipropylamphetamine; 1-Phenyl-2-propylaminopentane; 1-Phenyl-2-propylamino-pentane; 1-Phenyl-2-propyl-aminopentane
Drug class Catecholaminergic activity enhancer
Legal status
Legal status
Identifiers
  • (2R)-1-Phenyl-N-propylpentan-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C14H23N
Molar mass 205.345 g·mol−1
3D model (JSmol)
  • CCCN[C@H](CCC)Cc1ccccc1
  • InChI=1S/C14H23N/c1-3-8-14(15-11-4-2)12-13-9-6-5-7-10-13/h5-7,9-10,14-15H,3-4,8,11-12H2,1-2H3/t14-/m1/s1
  • Key:PBENSVGEGPJNFJ-CQSZACIVSA-N

1-Phenyl-2-propylaminopentane (PPAP; developmental code name MK-306) is an experimental drug related to selegiline which acts as a catecholaminergic activity enhancer (CAE). [1] [2] [3] [4]

Contents

PPAP is a CAE and enhances the nerve impulse propagation-mediated release of norepinephrine and dopamine. [1] [3] [4] [5] It produces psychostimulant-like effects in animals. [4] The drug is a phenethylamine and amphetamine derivative and was derived from selegiline. [3] [4]

PPAP was first described in the literature in 1988 [6] and in the first major paper in 1992. [4] [7] It led to the development of the improved monoaminergic activity enhancer (MAE) benzofuranylpropylaminopentane (BPAP) in 1999. [1] [3] PPAP was a reference compound for studying the MAE system for many years. [1] [2] [3] However, it was superseded by BPAP, which is more potent, selective, and also enhances serotonin. [8] [1] [2] [3] [9] [10] There has been interest in PPAP for potential clinical use in humans, including in the treatment of depression, attention deficit hyperactivity disorder (ADHD), and Alzheimer's disease. [4]

Pharmacology

Pharmacodynamics

Catecholaminergic activity enhancer

PPAP is classified as a catecholaminergic activity enhancer (CAE), a drug that stimulates the impulse propagation-mediated release of the catecholamine neurotransmitters norepinephrine and dopamine in the brain. [1] [2] [3] [4] [5] [11]

Unlike stimulants such as amphetamine, which release a flood of monoamine neurotransmitters in an uncontrolled manner, (–)-PPAP instead only increases the amount of neurotransmitters that get released when a neuron is stimulated by receiving an impulse from a neighboring neuron. [11] [5] Both amphetamine and (–)-PPAP promote the release of monoamines; however, while amphetamine causes neurons to release neurotransmitter stores into the synapse regardless of external input, (–)-PPAP does not influence the pattern of neurotransmitter release and instead releases a larger amount of neurotransmitters than normal. [11] [5]

Recent findings have suggested that known synthetic monoaminergic activity enhancers (MAEs) like PPAP, BPAP, and selegiline may exert their effects via trace amine-associated receptor 1 (TAAR1) agonism. [12] [13] This was evidenced by the TAAR1 antagonist EPPTB reversing the MAE effects of BPAP and selegiline, among other findings. [12] [13] Another compound, rasagiline, has likewise been found to reverse the effects of MAEs, and has been proposed as a possible TAAR1 antagonist. [13]

The therapeutic index for PPAP in animal models is greater than that of amphetamine while producing comparable improvements in learning, retention, and antidepressant effects. [4] It has been found to reduce deficits induced by the dopamine depleting agent tetrabenazine in the shuttle box learning test in rats. [4] [14]

PPAP and selegiline are much less potent than BPAP as MAEs. [3] [10] Whereas PPAP and selegiline are active at doses of 1 to 5 mg/kg in vivo in rats, BPAP is active at doses of 0.05 to 10 mg/kg. [3] BPAP is 130 times as potent as selegiline in the shuttle box test. [1] In contrast to BPAP however, the MAE effects of PPAP and selegiline are not reversed by the BPAP antagonist 3-F-BPAP. [2] In addition, whereas PPAP and selegiline are selective as MAEs of norepinephrine and dopamine, BPAP is a MAE of not only norepinephrine and dopamine but also of serotonin. [1] [10] [2] [4]

Other actions

Unlike the related CAE selegiline, (–)-PPAP has no activity as a monoamine oxidase inhibitor. [8] [15]

Chemistry

PPAP, also known as α,N-dipropylphenethylamine or as α-desmethyl-α,N-dipropylamphetamine, is a substituted phenethylamine and amphetamine derivative. [4] It was derived from structural modification of selegiline (L-deprenyl; (R)-(–)-N,α-dimethyl-N-2-propynylphenethylamine). [4]

Both racemic PPAP and subsequently its more active (–)- or (2R)-enantiomer (–)-PPAP have been employed in the literature. [4] [14] [1] [2] [5] [16]

PPAP is similar in chemical structure to propylamphetamine (N-propylamphetamine; PAL-424), but has an extended α-alkyl chain. It is also similar in structure to α-propylphenethylamine (PAL-550), but has an extended N-alkyl chain. A more well-known derivative of α-propylphenethylamine is pentedrone (α-propyl-β-keto-N-methylphenethylamine). N-Propylamphetamine and α-propylphenethylamine act as low-potency dopamine reuptake inhibitors (IC50 Tooltip half-maximal inhibitory concentration = 1,013 nM and 2,596 nM, respectively) and are inactive as dopamine releasing agents in vitro . [17]

A related MAE, BPAP, is a substituted benzofuran derivative and tryptamine relative that was derived from structural modification of PPAP. [1] It was developed by replacement of the benzene ring in PPAP with a benzofuran ring. [10] [18] Another related MAE, indolylpropylaminopentane (IPAP), is a tryptamine derivative that is the analogue of PPAP in which the benzene ring has been replaced with an indole ring. [18] [12] [13]

PPAP (MK-306) and its (–)-enantiomer (–)-PPAP must not be confused with the sigma receptor ligand R(−)-N-(3-phenyl-n-propyl)-1-phenyl-2-aminopropane ((–)-PPAP—same abbreviation) [19] or with the cephamycin antibiotic cefoxitin (MK-306—same developmental code name). [20] [21] [22]

History

Racemic PPAP (MK-306) was first described in the scientific literature in 1988 [6] and a series of papers characterizing it were published in the early 1990s. [23] [24] [25] [26] [27] [28] [7] [4] [29] The first major paper on the drug was published in 1992. [4] It was synthesized by József Knoll and colleagues. [7] [4] The potencies of the different enantiomers of PPAP were assessed in 1994. [14] Subsequent papers have employed (–)-PPAP. [1] [2] [5] [16]

Several patents of PPAP have been published. [30] [31] [32]

The development of PPAP was critical in elucidating that the CAE effects of selegiline are unrelated to its monoamine oxidase inhibition. [8] [1] [2] [3] For many years, PPAP served as a reference compound in studying MAEs. [1] [2] [3] However, it was eventually superseded by BPAP, which was discovered in 1999. [8] [1] [2] [3] [9] [10] This MAE is potent and selective than PPAP and, in contrast to PPAP and selegiline, also enhances serotonin. [8] [1] [2] [3] [9]

Research

PPAP has been proposed as a potential therapeutic agent for attention deficit hyperactivity disorder (ADHD), Alzheimer's disease, and depression based on preclinical findings. [4] The developers of PPAP attempted to have it clinically studied, but were unsuccessful and it was never assessed in humans. [1]

Related Research Articles

<span class="mw-page-title-main">Phenethylamine</span> Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

<span class="mw-page-title-main">Tryptamine</span> Metabolite of the amino acid tryptophan

Tryptamine is an indolamine metabolite of the essential amino acid, tryptophan. The chemical structure is defined by an indole—a fused benzene and pyrrole ring, and a 2-aminoethyl group at the second carbon. The structure of tryptamine is a shared feature of certain aminergic neuromodulators including melatonin, serotonin, bufotenin and psychedelic derivatives such as dimethyltryptamine (DMT), psilocybin, psilocin and others.

<span class="mw-page-title-main">Selegiline</span> Monoamine oxidase inhibitor

Selegiline, also known as L-deprenyl and sold under the brand names Eldepryl, Zelapar, and Emsam among others, is a medication which is used in the treatment of Parkinson's disease and major depressive disorder. It has also been studied and used off-label for a variety of other indications, but has not been formally approved for any other use. The medication, in the form licensed for depression, has modest effectiveness for this condition that is similar to that of other antidepressants. Selegiline is provided as a swallowed tablet or capsule or an orally disintegrating tablet (ODT) for Parkinson's disease and as a patch applied to skin for depression.

<span class="mw-page-title-main">Deprenyl</span> Pharmaceutical drug

Deprenyl, also known by its developmental code name E-250 and as N-propargylmethamphetamine, is the racemic mixture of D-deprenyl and L-deprenyl (selegiline). It was discovered in 1961 in Hungary at Chinoin Pharmaceutical Company by Zoltan Ecseri and József Knoll, was patented in 1962, and was first described in the literature in 1964 or 1965.

<span class="mw-page-title-main">Dopaminergic</span> Substance related to dopamine functions

Dopaminergic means "related to dopamine", a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain.

<span class="mw-page-title-main">Levmetamfetamine</span> Topical nasal decongestant

Levmetamfetamine, also known as l-desoxyephedrine or levomethamphetamine, and commonly sold under the brand name Vicks VapoInhaler among others, is an optical isomer of methamphetamine primarily used as a topical nasal decongestant. It is used to treat nasal congestion from allergies and the common cold. It was first used medically as decongestant beginning in 1958 and has been used for such purposes, primarily in the United States, since then.

<span class="mw-page-title-main">Clorgiline</span> Chemical compound

Clorgiline (INN), or clorgyline (BAN), is a monoamine oxidase inhibitor (MAOI) structurally related to pargyline which is described as an antidepressant. Specifically, it is an irreversible and selective inhibitor of monoamine oxidase A (MAO-A). Clorgiline was never marketed, but it has found use in scientific research. It has been found to bind with high affinity to the σ1 receptor (Ki = 3.2 nM) and with very high affinity to the I2 imidazoline receptor (Ki = 40 pM).

<span class="mw-page-title-main">Rasagiline</span> Chemical compound

Rasagiline, sold under the brand name Azilect among others, is a medication which is used in the treatment of Parkinson's disease. It is used as a monotherapy to treat symptoms in early Parkinson's disease or as an adjunct therapy in more advanced cases. The drug is taken by mouth.

<span class="mw-page-title-main">Pargyline</span> Chemical compound

Pargyline, sold under the brand name Eutonyl among others, is a monoamine oxidase inhibitor (MAOI) medication which has been used to treat hypertension but is no longer marketed. It has also been studied as an antidepressant, but was never licensed for use in the treatment of depression. The drug is taken by mouth.

<span class="mw-page-title-main">Benzofuranylpropylaminopentane</span> Chemical compound

(–)-Benzofuranylpropylaminopentane is an experimental drug related to selegiline which acts as a monoaminergic activity enhancer (MAE). It is orally active in animals.

<span class="mw-page-title-main">Levoamphetamine</span> CNS stimulant and isomer of amphetamine

Levoamphetamine is a stimulant medication which is used in the treatment of certain medical conditions. It was previously marketed by itself under the brand name Cydril, but is now available only in combination with dextroamphetamine in varying ratios under brand names like Adderall and Evekeo. The drug is known to increase wakefulness and concentration in association with decreased appetite and fatigue. Pharmaceuticals that contain levoamphetamine are currently indicated and prescribed for the treatment of attention deficit hyperactivity disorder (ADHD), obesity, and narcolepsy in some countries. Levoamphetamine is taken by mouth.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; monoamine releasing agents can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">EPPTB</span> Chemical compound

EPPTB is a drug developed by Hoffmann-La Roche which acts as a potent and selective inverse agonist of the trace amine-associated receptor 1 (TAAR1), with no significant activity at other targets. EPPTB is one of the first selective antagonists developed for the TAAR1, and has been used to demonstrate an important role for TAAR1 in regulation of dopaminergic signaling in the limbic system.

<span class="mw-page-title-main">Monoaminergic activity enhancer</span> Class of compounds in the nervous system

Monoaminergic activity enhancers (MAE), also known as catecholaminergic/serotonergic activity enhancers (CAE/SAE), are a class of drugs that enhance the action potential-evoked release of monoamine neurotransmitters in the nervous system. MAEs are distinct from monoamine releasing agents (MRAs) like amphetamine and fenfluramine in that they do not induce the release of monoamines from synaptic vesicles but rather potentiate only nerve impulse propagation-mediated monoamine release. That is, MAEs increase the amounts of monoamine neurotransmitters released by neurons per electrical impulse.

<span class="mw-page-title-main">4-Fluoroselegiline</span> Chemical compound

4-Fluoroselegiline, or p-fluoro-L-deprenyl, is a substituted amphetamine designer drug. It is the 4-fluorinated derivate of selegiline.

<span class="mw-page-title-main">Desmethylselegiline</span> Chemical compound

Desmethylselegiline (DMS), also known as norselegiline or as N-propargyl-L-amphetamine, is an active metabolite of selegiline, a medication used in the treatment of Parkinson's disease and depression.

<span class="mw-page-title-main">Pharmacology of selegiline</span> Pharmacology of the antiparkinsonian and antidepressant selegiline

The pharmacology of selegiline pertains to the pharmacodynamic and pharmacokinetic properties of the antiparkinsonian and antidepressant selegiline (L-deprenyl). Selegiline is available in a few different forms, including oral tablets and capsules, orally disintegrating tablets (ODTs), and transdermal patches. These forms have differing pharmacological properties.

<span class="mw-page-title-main">Indolylpropylaminopentane</span> A synthetic monoaminergic activity enhancer drug

Indolylpropylaminopentane (IPAP), also known as α,N-dipropyltryptamine (α,N-DPT), is a monoaminergic activity enhancer (MAE) that is closely related to benzofuranylpropylaminopentane (BPAP) and phenylpropylaminopentane (PPAP). It is a tryptamine derivative and the corresponding analogue of PPAP and BPAP with an indole ring instead of a benzene ring or benzofuran ring, respectively. IPAP is also a positional isomer of N,N-dipropyltryptamine (N,N-DPT).

<span class="mw-page-title-main">3-F-BPAP</span> Monoaminergic activity enhancer antagonist

3-F-BPAP is the 3-fluorinated derivative of benzofuranylpropylaminopentane (BPAP) and is an antagonist of the monoaminergic activity enhancer (MAE) effects of the tryptamine-related BPAP.

József Knoll, or Joseph Knoll, was a Hungarian psychopharmacologist known for developing the antiparkinsonian and antidepressant drug selegiline (L-deprenyl).

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Knoll J (2001). "Antiaging compounds: (-)deprenyl (selegeline) and (-)1-(benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective highly potent enhancer of the impulse propagation mediated release of catecholamine and serotonin in the brain". CNS Drug Rev. 7 (3): 317–45. doi:10.1111/j.1527-3458.2001.tb00202.x. PMC   6494119 . PMID   11607046. Recognizing that (–)deprenyl-induced activation of the nigrostriatal dopaminergic system is unrelated to the inhibition of MAO-B (32), we performed a structure-activity relationship study with the aim of developing deprenyl analogues that, on the one hand, are free of the MAO inhibitory property and, on the other hand, are, in contrast to deprenyl, not metabolized to amphetamines (44). (–)PPAP was selected as a reference substance for further studies. Although (–)PPAP was the first PEA-derived enhancer substance free of the unwanted effects of (–)deprenyl, its clinical efficiency was, in spite of all our efforts, never tested. Figure 8 shows the chemical structure and pharmacologic spectrum of the most important PEA-derived substances that have an enhancer effect.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Knoll J (August 2003). "Enhancer regulation/endogenous and synthetic enhancer compounds: a neurochemical concept of the innate and acquired drives". Neurochem Res. 28 (8): 1275–1297. doi:10.1023/a:1024224311289. PMID   12834268. Because (–)-deprenyl is a highly potent and selective inhibitor of MAO-B, we performed a structure–activity relationship study to develop a deprenyl-derived enhancer substance free of the MAO-B inhibitory property (11). (–)-1-Phenyl-2-propylaminopentane [(–)-PPAP] is our reference substance with this pharmacological profile. [...] Remarkably, 1 mg/kg (–)-PPAP, a (–)-deprenyl–derived enhancer substance devoid of the MAO-B inhibitory potency of its parent compound, fully antagonized tetrabenazine-induced learning depression in HP rats and was ineffective in LP rats. [...] Furthermore, 3-F-BPAP did not influence the enhancer effect of (–)-PPAP, a (–)-deprenyl analogue free of MAO-B inhibitory potency (34, Fig. 4). The data clearly show that the molecular mechanism through which the PEA-derived substances, (–)-deprenyl and (–)-PPAP, exert their enhancer effect in vivo, is not identical with the one through the stimulation of which the tryptamine-derived substance, (–)-BPAP, acts.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 Gaszner P, Miklya I (January 2006). "Major depression and the synthetic enhancer substances, (-)-deprenyl and R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 30 (1): 5–14. doi:10.1016/j.pnpbp.2005.06.004. PMID   16023777. S2CID   26570703. This was shown with the development of (–)-1-phenyl-2-propylaminopentane, (–)-PPAP, a derivative of (–)-deprenyl which shared the enhancer activity with its parent compound but was free of its MAO-B inhibitory property (Knoll et al., 1992). (–)-PPAP enhanced dopaminergic activity in the brain like (–)-deprenyl. Knoll's progress in clarifying the mechanism of action of (–)-deprenyl responsible for enhanced dopaminergic activity can be followed in his sequent reviews (Knoll, 1978, 1983, 1987, 1992, 1995), until he came to the final conclusion that (–)-deprenyl acts primarily as a PEA-derived synthetic enhancer substance (Knoll, 1998). [...] Since (–)-deprenyl is a highly potent and selective inhibitor of MAO-B, a structure –activity relationship study was performed to develop a deprenyl-derived enhancer substance being free of the MAO-B inhibitory property (Knoll et al., 1992), and (–)-PPAP is at present the reference substance with this pharmacological profile. [...] The subcutaneous administration of 1 mg/kg tetrabenazine, once daily for 5 days, which depletes the catecholamine stores in the brain, significantly inhibits in rats the acquisition of a two-way conditioned avoidance reflex in the shuttle box. Enhancer substances antagonize, in a dose-dependent manner, the inhibition of learning caused by tetrabenazine. The tryptamine-derived selective and highly potent enhancer, BPAP acted in dose range from 0.05 to 10 mg/kg. The PEA-derived enhancer substances, (–)-deprenyl and (–)-PPAP were much less active (1–5 mg/kg).
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Knoll J, Knoll B, Török Z, Timár J, Yasar S (1992). "The pharmacology of 1-phenyl-2-propylamino-pentane (PPAP), a deprenyl-derived new spectrum psychostimulant". Archives Internationales de Pharmacodynamie et de Therapie. 316: 5–29. PMID   1356324.
  5. 1 2 3 4 5 6 Knoll J, Miklya I, Knoll B, Markó R, Kelemen K (February 1996). "(-)Deprenyl and (-)1-phenyl-2-propylaminopentane, [(-)PPAP], act primarily as potent stimulants of action potential-transmitter release coupling in the catecholaminergic neurons". Life Sciences. 58 (10): 817–827. doi:10.1016/0024-3205(96)00014-8. PMID   8602114.
  6. 1 2 Knoll B, Timar J, Knoll J (1988). "Amphetamine-derived potent psychostimulants devoid of biogenic amine releasing properties". Pharmacological Research Communications. 20: 119–120. doi:10.1016/S0031-6989(88)80670-2.
  7. 1 2 3 Healy D (2000). "The Psychopharmacology of Life and Death. Interview with Joseph Knoll.". The Psychopharmacologists, Vol. III: Interviews. London: Arnold. pp. 81–110. doi:10.4324/9781003058892-3. ISBN   978-0-340-76110-6. This led us in 1992 to 1-Phenyl-2-propylamino-pentane (PPAP) a completely new and very important compound (Fig. 3.1). We started this work in early 1989. I realized finally that we owe the loss of the catecholamine-releasing property, so characteristic of deprenyl, to the bulky substitution attached to the nitrogen, so we put in bulky substitutions to amphetamine. [...]
  8. 1 2 3 4 5 Miklya I (November 2016). "The significance of selegiline/(-)-deprenyl after 50 years in research and therapy (1965-2015)". Mol Psychiatry. 21 (11): 1499–1503. doi:10.1038/mp.2016.127. PMID   27480491. The demonstration that the DEP analog ( − )-1-phenyl-2- propylaminopentane devoid of MAO inhibitory property, enhanced like DEP the activity of the catecholaminergic brain engine revealed that this effect is unrelated to the selective inhibition of MAO-B. [...] DEVELOPMENT OF (− )-1-PHENYL-2-PROPYLAMINOPENTANE Knoll developed ( − )-1-phenyl-2-propylaminopentane, a DEP analog, which is as equally active with DEP in enhancing the activity of the catecholaminergic brain engine, but it is devoid of MAOI property. This study furnished primary evidence that the main effect of DEP, the specific stimulation of the catecholaminergic brain engine, is unrelated to MAO inhibition.31
  9. 1 2 3 Shimazu S, Miklya I (May 2004). "Pharmacological studies with endogenous enhancer substances: beta-phenylethylamine, tryptamine, and their synthetic derivatives". Prog Neuropsychopharmacol Biol Psychiatry. 28 (3): 421–427. doi:10.1016/j.pnpbp.2003.11.016. PMID   15093948.
  10. 1 2 3 4 5 Knoll J, Yoneda F, Knoll B, Ohde H, Miklya I (December 1999). "(-)1-(Benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain". British Journal of Pharmacology. 128 (8): 1723–1732. doi:10.1038/sj.bjp.0702995. PMC   1571822 . PMID   10588928. Our selected reference compound, (7)BPAP, the benzofuran analogue of (7)PPAP, a much more potent enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain than either (7)deprenyl or (7)PPAP and a compound structurally unrelated to PEA and the amphetamines, seems to be an especially promising experimental tool for studying the nature and the physiological role of the CAE/SAE mechanism in the brain.
  11. 1 2 3 Bandala C, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Martínez-López V, Cruz-Hernández TR, et al. (February 2023). "Therapeutic Potential of Dopamine and Related Drugs as Anti-Inflammatories and Antioxidants in Neuronal and Non-Neuronal Pathologies". Pharmaceutics. 15 (2): 693. doi: 10.3390/pharmaceutics15020693 . PMC   9966027 . PMID   36840015. DA-releasing agents are a type of drug that induces, through various mechanisms, the release of DA from the presynaptic neuron into the synaptic cleft, leading to an increase in extracellular concentrations of the neurotransmitter. Examples are amphetamine, lisdexamfetamine (L-lysine-d-amphetamine; vyvanse), methamphetamine, methylenedioxymethamphetamine (MDMA), and 4-methylaminorex [27,84–87]. Moreover, (-)1-(benzofuran-2- yl)-2-propylaminopentane, (-)BPAP, (-)-1-phenyl-2-propylaminopentane, and (-)PPAP are enhancers of dopamine activity. BPAP and PPAP act as potent stimulants of neurotransmitter release in dopaminergic neurons, leaving MAO activity largely unchanged. BPAP and PPAP controllably increase the quantity of neurotransmitters that are released when a neuron is stimulated by a neighboring neuron, and they are currently in the research phase [39,88,89].
  12. 1 2 3 Harsing LG, Knoll J, Miklya I (August 2022). "Enhancer Regulation of Dopaminergic Neurochemical Transmission in the Striatum". Int J Mol Sci. 23 (15): 8543. doi: 10.3390/ijms23158543 . PMC   9369307 . PMID   35955676.
  13. 1 2 3 4 Harsing LG, Timar J, Miklya I (August 2023). "Striking Neurochemical and Behavioral Differences in the Mode of Action of Selegiline and Rasagiline". Int J Mol Sci. 24 (17): 13334. doi: 10.3390/ijms241713334 . PMC   10487936 . PMID   37686140.
  14. 1 2 3 Gyarmati S, Timár J, Barna L, Knoll B, Knoll J (September 1994). "Reversal of shuttle-box deficit by 1-phenyl-2-propylaminopentane (PPAP)". European Neuropsychopharmacology. 4 (3): 298–299. doi:10.1016/0924-977X(94)90109-0.
  15. Csaba G, Kovács P, Pállinger E (January–February 2006). "Acute and delayed effect of (-) deprenyl and (-) 1-phenyl-2-propylaminopentane (PPAP) on the serotonin content of peritoneal cells (white blood cells and mast cells)". Cell Biochemistry and Function. 24 (1): 49–53. doi:10.1002/cbf.1183. PMID   15584092. S2CID   11027835.
  16. 1 2 Simon K, Harmat V, Török Z, Böcskei Z, Hermecz I (15 August 1996). "1-Phenyl-2-(propylamino)pentane, a Memory Enhancer". Acta Crystallographica Section C Crystal Structure Communications. 52 (8): 2090–2092. Bibcode:1996AcCrC..52.2090S. doi:10.1107/S0108270196005148.
  17. Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, et al. (February 2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug Alcohol Depend. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMID   25548026.
  18. 1 2 Yoneda F, Moto T, Sakae M, Ohde H, Knoll B, Miklya I, et al. (May 2001). "Structure-activity studies leading to (-)1-(benzofuran-2-yl)-2-propylaminopentane, ((-)BPAP), a highly potent, selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain". Bioorg Med Chem. 9 (5): 1197–1212. doi:10.1016/s0968-0896(01)00002-5. PMID   11377178.
  19. Glennon RA, Battaglia G, Smith JD (November 1990). "(-)PPAP: a new and selective ligand for sigma binding sites". Pharmacol Biochem Behav. 37 (3): 557–559. doi:10.1016/0091-3057(90)90027-f. PMID   1965044.
  20. "Cefoxitin". PubChem. U.S. National Library of Medicine. Retrieved 12 August 2024.
  21. Brogden RN, Heel RC, Speight TM, Avery GS (January 1979). "Cefoxitin: a review of its antibacterial activity, pharmacological properties and therapeutic use". Drugs. 17 (1): 1–37. doi:10.2165/00003495-197917010-00001. PMID   369806.
  22. Christophidis N, Dawborn JK, Vajda FJ (May 1978). "Studies of intravenous cefoxitin (MK306)". Med J Aust. 1 (9): 512–514. doi:10.5694/j.1326-5377.1978.tb112591.x. PMID   672750.
  23. Knoll B, Yasar S, Timár J, Knoll J (1990). "A (-) deprenyl-derived new spectrum psychostimulant". Acta Physiol Hung. 75 (Suppl): 173–174. PMID   1973564.
  24. Yasar S, Timár J, Knoll B, Knoll J (1990). "Comparison of the dependence capacity of amphetamine, MK-306 and (-)deprenyl". Acta Physiol Hung. 75 (Suppl): 299–300. PMID   2115235.
  25. Knoll B, Yasar S, Faragó I, Kovács I, Knoll J (1990). "1-phenyl-2-propyl-aminopentane. HCl (MK-306): A deprenyl-derived new spectrum psychostimulant". European Journal of Pharmacology. 183 (4): 1464–1465. doi:10.1016/0014-2999(90)94608-Z.
  26. Knoll B, Yasar S, Farago I, Kovacs I, Knoll J (1990). "1-phenyl-2-propyl-aminopentane.HCl (MK-306): a deprenyl-derived new spectrum psychostimulant". European Journal of Pharmacology. 183 (2): 454–455. doi:10.1016/0014-2999(90)93343-O.
  27. Timár J, Yasar S, Knoll B, Knoll J (1990). "Comparison of the effects of (-)deprenyl, 1-phenyl-2-propyl-aminopentane (MK-306) and amphetamine on the striatal and limbic dopaminergic system". Acta Physiol Hung. 75 (Suppl): 279–280. PMID   2115233.
  28. Gyarmati S, Hársing LG, Tekes K, Knoll J (1990). "Repeated administration of (-)deprenyl leaves the mesolimbic dopaminergic activity unchanged". Acta Physiol Hung. 75 (Suppl): 133–134. PMID   2115226.
  29. Knoll B, Timár J, Knoll J (1992). "Analysis of the mechanism of the action of the psychostimulant effect of 1-phenyl-2-propylaminopentane (PPAP). A comparison with amphetamine". Pharmacological Research. 25: 48–49. doi:10.1016/1043-6618(92)90280-O.
  30. US 5220068,Knoll J, Simay A, Szinnyei E, Somfai E, Torok Z, Mozsolits K, Bergmann J,"Psychostimulant agent",issued 15 June 1993, assigned to Chinoin Private Co Ltd.
  31. US 5075338,Knoll J, Simay A, Szinnyei E, Somfai E, Torok Z, Mozsolits K, Bergmann J,"Method of treatment of learning deficiency",issued 24 December 2001, assigned to Chinoin Private Co Ltd.
  32. US 6214859,Yoneda F, Knoll J, Ode H, Sakae M, Katurada M, Moto T, Ando T, Shimazu S, Takahata K, Fujimoto M,"Ethylamine derivatives",issued 10 April 2001, assigned to Fujimoto Brothers Co Ltd.