O-Phenyl-3-iodotyramine

Last updated
o-Phenyl-3-iodotyramine
O-Phenyl-3-iodotyramine structure.png
Clinical data
Other nameso-PIT; o-Phenyl-iodotyramine; o-Phenyliodotyramine
Drug class Trace amine-associated receptor 1 (TAAR1) agonist
Identifiers
  • 2-(3-Iodo-4-phenoxyphenyl)ethanamine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C14H14INO
Molar mass 339.176 g·mol−1
3D model (JSmol)
  • Ic1cc(CCN)ccc1Oc2ccccc2
  • InChI=1S/C14H14INO/c15-13-10-11(8-9-16)6-7-14(13)17-12-4-2-1-3-5-12/h1-7,10H,8-9,16H2

o-Phenyl-3-iodotyramine (o-PIT) is a drug which acts as a selective agonist for the trace amine-associated receptor 1 (TAAR1). [1] It has reasonable selectivity for TAAR1 but relatively low potency, and is rapidly metabolised in vivo , making it less useful for research than newer ligands such as RO5166017. [2] [3] [4] [5] Its EC50 Tooltip half-maximal effective concentration values have been reported to be 35 nM for the mouse TAAR1, [4] [6] 2.4 nM at the rat TAAR1, [6] and 9.5 nM at the human TAAR1. [5]

o-PIT has been found to produce effects in animals including hypothermia, hypolocomotion, antidepressant-like effects, anxiolytic-like effects, anti-obsessional-like effects, and antipsychotic-like effects, and inhibition of prepulse inhibition (PPI). [1] [5] [7] These actions may be partially to fully dependent on TAAR1 agonism depending on the effect in question. [5]

TAAR1 agonism has been implicated in modulating the effects of monoamine releasing agents (MRAs) like amphetamines. [8] The MRA 3,4-methylenedioxymethamphetamine (MDMA) is a potent agonist of the mouse TAAR1, whereas the MRA para-chloroamphetamine (PCA) is not a significant agonist of the human TAAR1 or presumably of the mouse TAAR1. [5] [9] MDMA-induced in-vivo brain serotonin and dopamine release and hyperlocomotion are augmented in TAAR1 knockout mice relative to normal mice, whereas the in-vivo brain serotonin and dopamine release of PCA are not different between normal mice and TAAR1 knockout mice. [5] [10] In the same study, o-PIT blunted the dopamine and serotonin release of PCA in mouse synaptosomes in vitro , an effect that was absent in synaptosomes from TAAR1 knockout mice. [5] [10] These findings led to conclusions that TAAR1 agonism by MDMA auto-inhibits and constrains its own effects in rodents. [10] [5] Although MDMA is a potent TAAR1 agonist in rodents, it is a very weak and non-significant TAAR1 agonist in humans. [9] [11] [12] [13]

Related Research Articles

<span class="mw-page-title-main">MDMA</span> Psychoactive drug, often called ecstasy

3,4-Methylenedioxymethamphetamine (MDMA), commonly known as ecstasy, and molly, is an empathogen–entactogenic drug with stimulant and minor psychedelic properties. In studies, it has been used alongside psychotherapy in the treatment of post-traumatic stress disorder (PTSD) and social anxiety in autism spectrum disorder. The purported pharmacological effects that may be prosocial include altered sensations, increased energy, empathy, and pleasure. When taken by mouth, effects begin in 30 to 45 minutes and last three to six hours.

<span class="mw-page-title-main">Tryptamine</span> Metabolite of the amino acid tryptophan

Tryptamine is an indolamine metabolite of the essential amino acid tryptophan. The chemical structure is defined by an indole—a fused benzene and pyrrole ring, and a 2-aminoethyl group at the second carbon. The structure of tryptamine is a shared feature of certain aminergic neuromodulators including melatonin, serotonin, bufotenin and psychedelic derivatives such as dimethyltryptamine (DMT), psilocybin, psilocin and others.

<span class="mw-page-title-main">3,4-Methylenedioxyamphetamine</span> Empathogen-entactogen, psychostimulant, and psychedelic drug of the amphetamine family

3,4-Methylenedioxyamphetamine (MDA), sometimes referred to as sass, is an empathogen-entactogen, stimulant, and psychedelic drug of the amphetamine family that is encountered mainly as a recreational drug. In its pharmacology, MDA is a serotonin–norepinephrine–dopamine releasing agent (SNDRA). In most countries, the drug is a controlled substance and its possession and sale are illegal.

<span class="mw-page-title-main">Phentermine</span> Weight loss medication

Phentermine, sold under the brand name Adipex-P among others, is a medication used together with diet and exercise to treat obesity. It is available by itself or as the combination phentermine/topiramate. Phentermine is taken by mouth.

<span class="mw-page-title-main">4-Methylaminorex</span> Group of stereoisomers

4-Methylaminorex is a stimulant drug of the 2-amino-5-aryloxazoline group that was first synthesized in 1960 by McNeil Laboratories. It is also known by its street name "U4Euh" ("Euphoria"). It is banned in many countries as a stimulant. 4-Methylaminorex has effects comparable to methamphetamine but with a longer duration.

<span class="mw-page-title-main">Aminorex</span> Chemical compound

Aminorex, sold under the brand names Menocil and Apiquel among others, is a weight loss (anorectic) stimulant drug. It was withdrawn from the market after it was found to cause pulmonary hypertension (PPH). In the United States, aminorex is a Schedule I controlled substance.

<span class="mw-page-title-main">3-Iodothyronamine</span> Chemical compound

3-Iodothyronamine (T1AM) is an endogenous thyronamine. It is a high-affinity ligand of the trace amine-associated receptor 1 (TAAR1). T1AM is the most potent endogenous TAAR1 agonist yet discovered. It is also an agonist of the TAAR2 and TAAR5 with similar potency as for the TAAR1 (all in the case of the human proteins). T1AM is not a ligand of the thyroid hormone receptors. However, it is additionally a ligand of various monoamine and other receptors. For instance, it is a muscarinic acetylcholine receptor antagonist.

<span class="mw-page-title-main">TAAR1</span> Protein-coding gene in the species Homo sapiens

Trace amine-associated receptor 1 (TAAR1) is a trace amine-associated receptor (TAAR) protein that in humans is encoded by the TAAR1 gene.

<i>para</i>-Chloroamphetamine Chemical compound

para-Chloroamphetamine (PCA), also known as 4-chloroamphetamine (4-CA), is a serotonin–norepinephrine–dopamine releasing agent (SNDRA) and serotonergic neurotoxin of the amphetamine family. It is used in scientific research in the study of the serotonin system, as a serotonin releasing agent (SRA) at lower doses to produce serotonergic effects, and as a serotonergic neurotoxin at higher doses to produce long-lasting depletions of serotonin.

<span class="mw-page-title-main">Monoamine releasing agent</span> Class of compounds

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of one or more monoamine neurotransmitters from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitters and hence enhanced signaling by those neurotransmitters. The monoamine neurotransmitters include serotonin, norepinephrine, and dopamine; MRAs can induce the release of one or more of these neurotransmitters.

<span class="mw-page-title-main">Serotonin releasing agent</span> Class of compounds

A serotonin releasing agent (SRA) is a type of drug that induces the release of serotonin into the neuronal synaptic cleft. A selective serotonin releasing agent (SSRA) is an SRA with less significant or no efficacy in producing neurotransmitter efflux at other types of monoamine neurons, including dopamine and norepinephrine neurons.

<span class="mw-page-title-main">RO5166017</span> Chemical compound

RO5166017, or RO-5166017, is a drug developed by Hoffmann-La Roche which acts as a potent and selective agonist for the trace amine-associated receptor 1 (TAAR1), with no significant activity at other targets. It is a partial agonist or near-full agonist depending on the species.

<span class="mw-page-title-main">EPPTB</span> Chemical compound

EPPTB, also known as RO5212773 or RO-5212773, is a drug developed by Hoffmann-La Roche which acts as a potent and selective antagonist or inverse agonist of the trace amine-associated receptor 1 (TAAR1). The drug was the first selective antagonist developed for the TAAR1. It is a potent agonist of the mouse and rat TAAR1, but is dramatically less potent as an agonist of the human TAAR1. EPPTB has been used in scientific research to demonstrate an important role for TAAR1 in regulation of dopaminergic signaling in the limbic system.

<span class="mw-page-title-main">Locomotor activity</span> Behavioral measure in animals

Locomotor activity is a measure of animal behavior which is employed in scientific research.

<span class="mw-page-title-main">Monoaminergic activity enhancer</span> Class of compounds in the nervous system

Monoaminergic activity enhancers (MAE), also known as catecholaminergic/serotonergic activity enhancers (CAE/SAE), are a class of drugs that enhance the action potential-evoked release of monoamine neurotransmitters in the nervous system. MAEs are distinct from monoamine releasing agents (MRAs) like amphetamine and fenfluramine in that they do not induce the release of monoamines from synaptic vesicles but rather potentiate only nerve impulse propagation-mediated monoamine release. That is, MAEs increase the amounts of monoamine neurotransmitters released by neurons per electrical impulse.

<span class="mw-page-title-main">RO5256390</span> Chemical compound

RO5256390 or RO-5256390 is a drug developed by Hoffmann-La Roche which acts as an agonist for the trace amine associated receptor 1 (TAAR1). It is a full agonist of the rat, cynomolgus monkey, and human TAAR1, but a partial agonist of the mouse TAAR1.

<span class="mw-page-title-main">RTI-7470-44</span> Potent human TAAR1 antagonist

RTI-7470-44 is a potent and selective antagonist of the human trace amine-associated receptor 1 (TAAR1) which is used in scientific research. It was discovered in 2022 and is the first potent antagonist of the human TAAR1 to be identified, following the potent mouse TAAR1 inverse agonist EPPTB in 2009.

<span class="mw-page-title-main">RO5263397</span> TAAR1 agonist

RO5263397, or RO-5263397, is a trace amine-associated receptor 1 (TAAR1) partial or full agonist which is used in scientific research. It is the most well-studied of all of the synthetic TAAR1 ligands. In addition to its use in research, RO5263397 is or was under development for potential clinical use as a medication.

<span class="mw-page-title-main">RO5203648</span> Pharmaceutical compound

RO5203648 is a trace amine-associated receptor 1 (TAAR1) partial agonist. It is a potent and highly selective partial agonist of both rodent and primate TAAR1. The drug suppresses the effects of psychostimulants like cocaine and methamphetamine. It also produces a variety of other behavioral effects, such as antidepressant-like, antipsychotic-like, and antiaddictive effects. Research with RO5203648 has led to interest in TAAR1 agonists for potential treatment of drug addiction. RO5203648 itself was not developed for potential medical use due to poor expected human pharmacokinetics.

<span class="mw-page-title-main">RO5073012</span> Pharmaceutical compound

RO5073012 is a selective low-efficacy partial agonist of the trace amine-associated receptor 1 (TAAR1) which has been used in scientific research. TAAR1 partial agonists like RO5073012 can have agonist- or antagonist-like effects at the TAAR1 depending on the context and level of TAAR1 signaling.

References

  1. 1 2 Mantas I (2022). "Regulation of Monoaminergic Functions by Gpcrs with a Special Emphasis on Mental and Movement Disorders". ProQuest. Retrieved 7 January 2025. At: Karolinska Institutet.
  2. Zucchi R, Chiellini G, Scanlan TS, Grandy DK (December 2006). "Trace amine-associated receptors and their ligands". British Journal of Pharmacology. 149 (8): 967–978. doi:10.1038/sj.bjp.0706948. PMC   2014643 . PMID   17088868.
  3. Ledonne A, Federici M, Giustizieri M, Pessia M, Imbrici P, Millan MJ, et al. (July 2010). "Trace amines depress D(2)-autoreceptor-mediated responses on midbrain dopaminergic cells". British Journal of Pharmacology. 160 (6): 1509–1520. doi:10.1111/j.1476-5381.2010.00792.x. PMC   2938821 . PMID   20590640.
  4. 1 2 Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, et al. (May 2011). "TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity". Proceedings of the National Academy of Sciences of the United States of America. 108 (20): 8485–8490. Bibcode:2011PNAS..108.8485R. doi: 10.1073/pnas.1103029108 . PMC   3101002 . PMID   21525407. RO5166017 exhibits high binding affinity for TAAR1 and high potency to stimulate cAMP production, particularly at rodent TAAR1. Compared with pTyr, RO5166017 exhibited 200- fold higher affinity (Ki = 1.9 vs. 404 nM) and potency to activate cAMP production (EC50 = 3.3 vs. 545 nM) at mouse TAAR1 (17), whereas T1AM and its derivative o-phenyl-3-iodotyramine show EC50 values of 112 and 35 nM, respectively (30).
  5. 1 2 3 4 5 6 7 8 Di Cara B, Maggio R, Aloisi G, Rivet JM, Lundius EG, Yoshitake T, Svenningsson P, Brocco M, Gobert A, De Groote L, Cistarelli L, Veiga S, De Montrion C, Rodriguez M, Galizzi JP, Lockhart BP, Cogé F, Boutin JA, Vayer P, Verdouw PM, Groenink L, Millan MJ (November 2011). "Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA)". J Neurosci. 31 (47): 16928–16940. doi:10.1523/JNEUROSCI.2502-11.2011. PMC   6623861 . PMID   22114263.
  6. 1 2 Hart ME, Suchland KL, Miyakawa M, Bunzow JR, Grandy DK, Scanlan TS (February 2006). "Trace amine-associated receptor agonists: synthesis and evaluation of thyronamines and related analogues". J Med Chem. 49 (3): 1101–1112. doi:10.1021/jm0505718. PMID   16451074.
  7. Mantas I, Millan MJ, Di Cara B, Groenink L, Veiga S, Cistarelli L, Brocco M, Bertrand M, Svenningsson P, Zhang X (August 2021). "Trace Amine-Associated Receptor 1 Contributes to Diverse Functional Actions of O-Phenyl-Iodotyramine in Mice but Not to the Effects of Monoamine-Based Antidepressants". Int J Mol Sci. 22 (16). doi: 10.3390/ijms22168907 . PMC   8396211 . PMID   34445611.
  8. Jing L, Li JX (August 2015). "Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction". Eur J Pharmacol. 761: 345–352. doi:10.1016/j.ejphar.2015.06.019. PMC   4532615 . PMID   26092759.
  9. 1 2 Gainetdinov RR, Hoener MC, Berry MD (July 2018). "Trace Amines and Their Receptors". Pharmacol Rev. 70 (3): 549–620. doi: 10.1124/pr.117.015305 . PMID   29941461.
  10. 1 2 3 Zhang X, Mantas I, Alvarsson A, Yoshitake T, Shariatgorji M, Pereira M, Nilsson A, Kehr J, Andrén PE, Millan MJ, Chergui K, Svenningsson P (2018). "Striatal Tyrosine Hydroxylase Is Stimulated via TAAR1 by 3-Iodothyronamine, But Not by Tyramine or β-Phenylethylamine". Front Pharmacol. 9: 166. doi: 10.3389/fphar.2018.00166 . PMC   5837966 . PMID   29545750. Di Cara et al. (2011) showed that TAAR1 decreases the amplitude of Methylenedioxymethamphetamine (MDMA) induced dopamine release both in ventral and dorsal striatum. In the same study it was observed that the TAAR1 agonist, o-phenyl-3-iodotyramine (o-PIT) blunted the para-chloroamphetamine (PCA) induced dopamine release in both structures (Di Cara et al., 2011).
  11. Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (April 2016). "In Vitro Characterization of Psychoactive Substances at Rat, Mouse, and Human Trace Amine-Associated Receptor 1". J Pharmacol Exp Ther. 357 (1): 134–144. doi:10.1124/jpet.115.229765. PMID   26791601.
  12. Lewin AH, Miller GM, Gilmour B (December 2011). "Trace amine-associated receptor 1 is a stereoselective binding site for compounds in the amphetamine class". Bioorganic & Medicinal Chemistry. 19 (23): 7044–7048. doi:10.1016/j.bmc.2011.10.007. PMC   3236098 . PMID   22037049.
  13. Dunlap LE, Andrews AM, Olson DE (October 2018). "Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine" (PDF). ACS Chem Neurosci. 9 (10): 2408–2427. doi:10.1021/acschemneuro.8b00155. PMC   6197894 . PMID   30001118. [...] it is unclear if TAAR1 plays any role in the effects of MDMA in humans, as MDMA does not activate human TAAR1 in cellular assays like it does mouse and rat TAAR1.84