Psilocin

Last updated
Psilocin
Psilocine skeletal formula.svg
Psilocin-3D-balls.png
Clinical data
Other namesPsilocine; Psilocyn; Psilotsin; 4-Hydroxy-N,N-dimethyltryptamine; 4-Hydroxy-DMT; 4-Hydroxy-N,N-DMT; 4-OH-DMT; 4-HO-DMT
Routes of
administration
By mouth, intravenous [1]
Drug class Serotonergic psychedelic (hallucinogen) [2]
ATC code
  • None
Legal status
Legal status
Pharmacokinetic data
Bioavailability Oral psilocybin: 52.7 ± 20.4% (as psilocin) [2] [1]
Metabolism Liver, other tissues: [4] [2] [1] [5]
Demethylation and deamination (MAO Tooltip monoamine oxidase)
Oxidation (ALDH Tooltip aldehyde dehydrogenase)
Glucuronidation (UGTs)
Metabolites • Psilocin-O-glucuronide [2] [1]
• 4-Hydroxy-indole-3-acetaldehyde [2] [1]
• 4-Hydroxyindole-3-acetic acid (4-HIAA) [2] [1]
• 4-Hydroxytryptophol [2] [1]
Elimination half-life Oral psilocybin: 2.3–3 hours (as psilocin) [2] [1] [6]
IV Tooltip Intravenous injection psilocybin: 1.2 hours (as psilocin) [1] [6]
Excretion Urine (mainly as psilocin-O-glucuronide, 2–4% unchanged) [2] [1] [6]
Identifiers
  • 3-[2-(Dimethylamino)ethyl]-1H-indol-4-ol
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.007.543 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C12H16N2O
Molar mass 204.273 g·mol−1
3D model (JSmol)
Melting point 173 to 176 °C (343 to 349 °F)
  • CN(C)CCc1c[nH]c2cccc(O)c12
  • InChI=1S/C12H16N2O/c1-14(2)7-6-9-8-13-10-4-3-5-11(15)12(9)10/h3-5,8,13,15H,6-7H2,1-2H3 Yes check.svgY
  • Key:SPCIYGNTAMCTRO-UHFFFAOYSA-N Yes check.svgY
   (verify)

Psilocin, also known as 4-hydroxy-N,N-dimethyltryptamine (4-OH-DMT), is a substituted tryptamine alkaloid and a serotonergic psychedelic. It is present in most psychedelic mushrooms [7] together with its phosphorylated counterpart psilocybin. Psilocin is a Schedule I drug under the Convention on Psychotropic Substances. [8] Acting on the serotonin 5-HT2A receptors, psilocin's psychedelic effects are directly correlated with the drug's occupancy at these receptor sites. [9] The subjective mind-altering effects of psilocin are highly variable and are said to resemble those of lysergic acid diethylamide (LSD) and N,N-dimethyltryptamine (DMT).

Contents

Effects

Dried psilocybin mushrooms. (Notice the characteristic blue bruising by the stems of the mushrooms.) Dried Cubensis.jpg
Dried psilocybin mushrooms. (Notice the characteristic blue bruising by the stems of the mushrooms.)

Its physiological effects are similar to a sympathetic arousal state. Specific effects observed after ingestion can include but are not limited to tachycardia, dilated pupils, restlessness or arousal, euphoria, open and closed eye visuals (common at medium to high doses), synesthesia (e.g. hearing colours and seeing sounds), increased body temperature, headache, sweating and chills, and nausea. Psilocin acts as a serotonin 5-HT2A, 5-HT2C, and 5-HT1A receptor agonist or partial agonist. Such receptors are claimed to significantly regulate visual processing, decision making, mood, blood pressure, and heart rate. [10]

There has been no direct lethality associated with psilocin. [10] [11] There has been no reported withdrawal syndrome when chronic use of this drug is ceased. [10] [12] There is cross tolerance among psilocin, mescaline, lysergic acid diethylamide (LSD), [10] [13] and other 5-HT2A, 5-HT2C, and 5-HT1A receptor agonists due to downregulation of these receptors.

Pharmacology

Psilocin is the pharmacologically active agent in the body after ingestion of psilocybin or some species of psychedelic mushrooms.

Psilocybin is rapidly dephosphorylated in the body to psilocin which acts as a serotonin 5-HT2A, 5-HT2C and 5-HT1A receptor agonist or partial agonist. Psilocin exhibits functional selectivity in that it activates phospholipase A2 instead of activating phospholipase C as the endogenous ligand serotonin does. Psilocin is structurally similar to serotonin (5-hydroxytryptamine), [10] differing only by the hydroxyl group being on the 4-position rather than the 5 and the dimethyl groups on the nitrogen. Its effects are thought to come from its agonist activity at 5-HT2A receptors in the prefrontal cortex.

Psilocin has no significant effect on dopamine receptors (unlike lysergic acid diethylamide (LSD)) and only affects the noradrenergic system at very high doses. [14]

Psilocin's elimination half-life ranges from 1 to 3 hours depending on route of administration of psilocybin. [6]

Chemistry

Psilocin and its phosphorylated cousin, psilocybin, were first isolated and named in 1958 by Swiss chemist Albert Hofmann. Hofmann obtained the chemicals from laboratory-grown specimens of the entheogenic mushroom Psilocybe mexicana . Hofmann also succeeded in finding synthetic routes to these chemicals. [15]

Psilocin can be obtained by dephosphorylation of natural psilocybin under strongly acidic or under alkaline conditions (hydrolysis). A synthetic route uses the Speeter–Anthony tryptamine synthesis procedure. First, 4-hydroxyindole is Friedel-Crafts-acylated with oxalyl chloride in position 3. The compound is further reacted with dimethylamine, yielding the indole-3-yl-glyoxamide. Finally, this 4-hydroxyindole-3-N,N-dimethylglyoxamide is reduced by lithium aluminum hydride yielding psilocin. [16]

Psilocin is relatively unstable in solution due to its phenolic hydroxy (-OH) group. In the presence of oxygen, it readily forms bluish and dark black degradation products. [17] Similar products are also formed in the presence of oxygen and Fe3+ ions.

Analogues

Sulfur analogs are known with a benzothienyl replacement [18] as well as 4-SH-DMT. [19] 1-Methylpsilocin is a functionally 5-HT2C receptor preferring agonist. [20] 4-Fluoro-N,N-dimethyltryptamine is known. [20] O-Acetylpsilocin (4-AcO-DMT) is the ester of acetic acid with psilocin. Additionally, replacement of a methyl group at the dimethylated nitrogen with an isopropyl or ethyl group yields 4-HO-MIPT (4-hydroxy-N-methyl-N-isopropyltryptamine) and 4-HO-MET (4-hydroxy-N-methyl-N-ethyltryptamine), respectively. 4-Acetoxy-MET (4-Acetoxy-N-methyl-N-ethyltryptamine), also known as 4-AcO-MET, is the acetate ester of 4-HO-MET, and a homologue of 4-AcO-DMT.

Society and culture

The United Nations Convention on Psychotropic Substances (adopted in 1971) requires its members to prohibit psilocybin, and parties to the treaty are required to restrict the use of the drug to medical and scientific research under strictly controlled conditions.

Australia

Psilocin is considered a Schedule 9 prohibited substance in Australia under the Poisons Standard (October 2015). [21] A Schedule 9 substance is a substance which may be abused or misused, the manufacture, possession, sale or use of which should be prohibited by law except when required for medical or scientific research, or for analytical, teaching or training purposes with approval of Commonwealth and/or State or Territory Health Authorities. [21]

Russia

Psilocin and psilocybin are banned in Russia, due to their status as narcotic drugs, with a criminal penalty for possession of more than 50 mg. [22]

See also

Related Research Articles

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

<span class="mw-page-title-main">Psilocybin</span> Chemical compound found in some species of mushrooms

Psilocybin, also known as 4-phosphoryloxy-N,N-dimethyltryptamine (4-PO-DMT), is a naturally occurring psychedelic prodrug compound produced by more than 200 species of fungi. The most potent are members of genus Psilocybe, such as P. azurescens, P. semilanceata, and P. cyanescens, but psilocybin has also been isolated from approximately a dozen other genera. Psilocybin is itself biologically inactive but is quickly converted by the body to psilocin, which has mind-altering effects similar, in some aspects, to those of lysergic acid diethylamide (LSD), mescaline, and dimethyltryptamine (DMT). In general, the effects include euphoria, visual and mental hallucinations, changes in perception, distorted sense of time, and perceived spiritual experiences. It can also cause adverse reactions such as nausea and panic attacks.

<span class="mw-page-title-main">Psychedelic drug</span> Hallucinogenic class of psychoactive drug

Psychedelics are a subclass of hallucinogenic drugs whose primary effect is to trigger non-ordinary mental states and a perceived "expansion of consciousness". Also referred to as classic hallucinogens or serotonergic hallucinogens, the term psychedelic is sometimes used more broadly to include various types of hallucinogens, such as those which are atypical or adjacent to psychedelia like salvia and MDMA, respectively.

<span class="mw-page-title-main">Psilocybin mushroom</span> Mushrooms containing psychoactive indole alkaloids

Psilocybin mushrooms, commonly known as magic mushrooms or shrooms, are a polyphyletic informal group of fungi that contain psilocybin, which turns into psilocin upon ingestion. Biological genera containing psilocybin mushrooms include Psilocybe, Panaeolus, Inocybe, Pluteus, Gymnopilus, and Pholiotina.

<span class="mw-page-title-main">Ergoline</span> Chemical compound

Ergoline is a chemical compound whose structural skeleton is contained in a variety of alkaloids, referred to as ergoline derivatives or ergoline alkaloids. Ergoline alkaloids, one being ergine, were initially characterized in ergot. Some of these are implicated in the condition ergotism, which can take a convulsive form or a gangrenous form. Even so, many ergoline alkaloids have been found to be clinically useful. Annual world production of ergot alkaloids has been estimated at 5,000–8,000 kg of all ergopeptines and 10,000–15,000 kg of lysergic acid, used primarily in the manufacture of semi-synthetic derivatives.

<span class="mw-page-title-main">2,5-Dimethoxy-4-methylamphetamine</span> Chemical compound

2,5-Dimethoxy-4-methylamphetamine is a psychedelic and a substituted amphetamine. It was first synthesized by Alexander Shulgin, and later reported in his book PiHKAL: A Chemical Love Story. DOM is classified as a Schedule I substance in the United States, and is similarly controlled in other parts of the world. Internationally, it is a Schedule I drug under the Convention on Psychotropic Substances. It is generally taken orally.

<span class="mw-page-title-main">2,5-Dimethoxy-4-bromoamphetamine</span> Chemical compound

Dimethoxybromoamphetamine (DOB), also known as brolamfetamine and bromo-DMA, is a psychedelic drug and substituted amphetamine of the phenethylamine class of compounds. DOB was first synthesized by Alexander Shulgin in 1967. Its synthesis and effects are documented in Shulgin's book PiHKAL: A Chemical Love Story.

<span class="mw-page-title-main">Diethyltryptamine</span> Chemical compound

DET, also known under its chemical name N,N-diethyltryptamine and as T-9, is a psychedelic drug closely related to DMT and 4-HO-DET. However, despite its structural similarity to DMT, its activity is induced by an oral dose of around 50–100 mg, without the aid of MAO inhibitors, and the effects last for about 2–4 hours.

<span class="mw-page-title-main">4-HO-MiPT</span> Chemical compound

4-HO-MiPT is a synthetic substituted aromatic compound and a lesser-known psychedelic tryptamine. It is thought to be a serotonergic psychedelic, similar to magic mushrooms, LSD and mescaline. Its molecular structure and pharmacological effects somewhat resemble those of the tryptamine psilocin, which is the primary psychoactive chemical in magic mushrooms.

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

<i>O</i>-Acetylpsilocin Semi-synthetic psychoactive drug

Psilacetin, also known as O-acetylpsilocin or as 4-acetoxy-N,N-dimethyltryptamine, is a semi-synthetic serotonergic psychedelic drug that has been suggested by David Nichols to be a potentially useful alternative to psilocybin for pharmacological studies, as they are both believed to be prodrugs of psilocin. However, some users report that O-acetylpsilocin's subjective effects differ from those of psilocybin and psilocin. Additionally, some users prefer 4-AcO-DMT to natural psilocybin mushrooms due to feeling fewer adverse side effects such as nausea and heavy body load, which are more frequently reported in experiences involving natural mushrooms. It is the acetylated form of the psilocybin mushroom alkaloid psilocin and is a lower homolog of 4-AcO-MET, 4-AcO-DET, 4-AcO-MiPT and 4-AcO-DiPT.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<span class="mw-page-title-main">Aeruginascin</span> Chemical compound

Aeruginascin, also known as 4-phosphoryloxy-N,N,N-trimethyltryptamine (4-PO-TMT), is an indoleamine derivative which occurs naturally within the mushrooms Inocybe aeruginascens, Pholiotina cyanopus, and Psilocybe cubensis.

<span class="mw-page-title-main">25B-NBOMe</span> Chemical compound

25B-NBOMe is a derivative of the phenethylamine psychedelic 2C-B, discovered in 2004 by Ralf Heim at the Free University of Berlin. It acts as a potent full agonist for the 5HT2A receptor. Duration of effects lasts about 3–10 hours, although the parent compound is rapidly cleared from the blood when used in the radiolabeled form in tracer doses. Recently, Custodio et al. (2019) evaluated the potential involvement of dysregulated dopaminergic system, neuroadaptation, and brain wave changes which may contribute to the rewarding and reinforcing properties of 25B-NBOMe in rodents.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">1-Methylpsilocin</span> Chemical compound

1-Methylpsilocin (developmental code names CMY, CMY-16) is a tryptamine derivative developed by Sandoz which acts as a selective agonist of the serotonin 5-HT2C receptor (IC50Tooltip half-maximal inhibitory concentration of 12 nM, vs. 633 nM at 5-HT2A), and an inverse agonist at 5-HT2B (Ki of 38 nM). While 1-methylpsilocin does have higher affinity for 5-HT2C than 5-HT2A, it does produce a head-twitch response in mice that is dependent on 5-HT2A, so it is not entirely free of effects on 5-HT2Ain vivo. In contrast to psilocin, 1-methylpsilocin did not activate 5-HT1A receptors in mice.

<span class="mw-page-title-main">Psilocybin therapy</span> Experimental use of psilocybin to treat anxiety & depression

Psilocybin therapy is the use of psilocybin in treating a range of mental health conditions, such as depression, anxiety, addictions, obsessive compulsive disorder, and psychosis. It is one of several forms of psychedelic therapy under study. Psilocybin was popularized as a psychedelic recreational drug in the 1970s and was classified as a Schedule I drug by the DEA. Research on psilocybin as a medical treatment was restricted until the 1990s because of the sociocultural fear of dependence on this drug. As of 2022, psilocybin is the most commonly researched psychedelic due to its safety and low potential for abuse and dependence. Clinical trials are being conducted at universities and there is evidence confirming the use of psilocybin in the treatment of depression, PTSD and end of life anxiety.

<span class="mw-page-title-main">4-PrO-DMT</span> Chemical compound

4-Propionoxy-N,N-dimethyltryptamine is a synthetic psychedelic drug from the tryptamine family with psychedelic effects, and is believed to act as a prodrug for psilocin. It produces a head-twitch response in mice. It has been sold online as a designer drug since May 2019. It was first identified as a new psychoactive substance in Sweden, in July 2019. A number of related derivatives have been synthesized as prodrugs of psilocin for medical applications.

References

  1. 1 2 3 4 5 6 7 8 9 10 Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, Ngwa W, Gordon L (May 2021). "The Therapeutic Potential of Psilocybin". Molecules. 26 (10): 2948. doi: 10.3390/molecules26102948 . PMC   8156539 . PMID   34063505.
  2. 1 2 3 4 5 6 7 8 9 Dodd S, Norman TR, Eyre HA, Stahl SM, Phillips A, Carvalho AF, Berk M (July 2022). "Psilocybin in neuropsychiatry: a review of its pharmacology, safety, and efficacy". CNS Spectr: 1–11. doi: 10.1017/S1092852922000888 . PMID   35811423.
  3. Anvisa (2023-07-24). "RDC Nº 804 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 804 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-07-25). Archived from the original on 2023-08-27. Retrieved 2023-08-27.
  4. MacCallum CA, Lo LA, Pistawka CA, Deol JK (2022). "Therapeutic use of psilocybin: Practical considerations for dosing and administration". Frontiers in Psychiatry. 13: 1040217. doi: 10.3389/fpsyt.2022.1040217 . PMC   9751063 . PMID   36532184.
  5. Coppola M, Bevione F, Mondola R (February 2022). "Psilocybin for Treating Psychiatric Disorders: A Psychonaut Legend or a Promising Therapeutic Perspective?". Journal of Xenobiotics. 12 (1): 41–52. doi: 10.3390/jox12010004 . PMC   8883979 . PMID   35225956.
  6. 1 2 3 4 Tylš F, Páleníček T, Horáček J (March 2014). "Psilocybin--summary of knowledge and new perspectives". European Neuropsychopharmacology. 24 (3): 342–356. doi:10.1016/j.euroneuro.2013.12.006. PMID   24444771. S2CID   10758314.
  7. Gotvaldová K, Borovička J, Hájková K, Cihlářová P, Rockefeller A, Kuchař M (November 2022). "Extensive Collection of Psychotropic Mushrooms with Determination of Their Tryptamine Alkaloids". International Journal of Molecular Sciences. 23 (22): 14068. doi: 10.3390/ijms232214068 . PMC   9693126 . PMID   36430546.
  8. "List of psychotropic substances under international control" (PDF) (23rd ed.). Vienna Austria: International Narcotics Control Board. August 2003. Archived from the original (PDF) on 4 February 2012. Retrieved 2012-10-11.
  9. Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. (June 2019). "Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels". Neuropsychopharmacology. 44 (7): 1328–1334. doi:10.1038/s41386-019-0324-9. PMC   6785028 . PMID   30685771.
  10. 1 2 3 4 5 Diaz J (1996). How Drugs Influence Behavior: A Neurobehavioral Approach. Englewood Cliffs: Prentice Hall. ISBN   978-0-02-328764-0.
  11. Garcia-Romeu A, Kersgaard B, Addy PH (August 2016). "Clinical applications of hallucinogens: A review". Experimental and Clinical Psychopharmacology. 24 (4): 229–68. doi:10.1037/pha0000084. PMC   5001686 . PMID   27454674.
  12. Assessing Drug Risks: A Scientific Framework. European Monitoring Centre for Drugs and Drug Addiction. Luxembourg: EMCDDA. 2016.
  13. Nichols DE (April 2016). "Psychedelics". Pharmacological Reviews. 68 (2): 264–355. doi:10.1124/pr.115.011478. PMC   4813425 . PMID   26841800.
  14. Jerome L (March–April 2007). "Psilocybin Investigator's Brochure" (PDF). Retrieved 2012-10-11.
  15. Hofmann A, Heim R, Brack A, Kobel H, Frey A, Ott H, Petrzilka T, Troxler F (1959). "Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen" [Psilocybin and psilocin, two psychotropic substances in Mexican magic mushrooms]. Helvetica Chimica Acta (in German). 42 (5): 1557–72. doi:10.1002/hlca.19590420518.
  16. Kargbo RB, Sherwood A, Walker A, Cozzi NV, Dagger RE, Sable J, et al. (July 2020). "Direct Phosphorylation of Psilocin Enables Optimized cGMP Kilogram-Scale Manufacture of Psilocybin". ACS Omega. 5 (27): 16959–16966. doi:10.1021/acsomega.0c02387. PMC   7364850 . PMID   32685866. S2CID   220599227.
  17. Lenz C, Wick J, Braga D, García-Altares M, Lackner G, Hertweck C, et al. (January 2020). "Injury-Triggered Blueing Reactions of Psilocybe "Magic" Mushrooms". Angewandte Chemie. 59 (4): 1450–1454. doi:10.1002/anie.201910175. PMC   7004109 . PMID   31725937.
  18. Chapman NB, Scrowston RM, Sutton TM (1972). "Synthesis of the sulphur analogue of psilocin and some related compounds". Journal of the Chemical Society, Perkin Transactions 1: 3011–15. doi:10.1039/P19720003011.
  19. CH 421960,Hofmann A, Troxler F,issued 1967; CA 68:95680n
  20. 1 2 Sard H, Kumaran G, Morency C, Roth BL, Toth BA, He P, Shuster L (October 2005). "SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist". Bioorganic & Medicinal Chemistry Letters. 15 (20): 4555–4559. doi:10.1016/j.bmcl.2005.06.104. PMID   16061378.
  21. 1 2 "Poisons Standard". Therapeutics Goods Administration, Department of Health. Australian Government. October 2015.
  22. "On approval of significant, large and particularly large amounts of narcotic drugs and psychotropic substances, as well as significant, large and particularly large sizes for plants containing narcotic drugs or psychotropic substances, or parts thereof, containing narcotic drugs or psychotropic substances for the purposes of articles 228, 228.1, 229 and 229.1 of the Criminal Code of the Russian Federation (as amended) (translated)". Resolution of the Government of the Russian Federation. Criminal Code of the Russian Federation. 1 October 2012. 1002. Retrieved 1 April 2018.