Clinical data | |
---|---|
Trade names | Navane |
Other names | Thiothixene (USAN US) |
AHFS/Drugs.com | Monograph |
MedlinePlus | a682867 |
Pregnancy category |
|
Routes of administration | By mouth |
Drug class | Typical antipsychotic |
ATC code | |
Legal status | |
Legal status | |
Pharmacokinetic data | |
Bioavailability | ~100% |
Metabolism | Hepatic |
Elimination half-life | 10–20 hours |
Excretion | Gastrointernal tract, faeces |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.233.356 |
Chemical and physical data | |
Formula | C23H29N3O2S2 |
Molar mass | 443.62 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Tiotixene, or thiothixene is a typical antipsychotic agent currently sold under the brand name Navane which is predominantly utilised to treat acute and chronic schizophrenia. [2] Beyond its primary indication, it can exhibit a variety of effects common to neuroleptic drugs including anxiolytic, anti-depressive, and anti-aggressive properties. [3]
The drug was first synthesized and marketed in 1967 under the pharmaceutical company Pfizer. [2] [4] [5] [6] While the usage of the drug has declined in recent decades, the drug continues to be manufactured and prescribed in the US and Canada. [6]
Being a member of the thioxanthene class, it is chemically related to other typical neuroleptic agents such as chlorprothixene, clopenthixol, flupenthixol, and zuclopenthixol. Tiotixene also shares structural similarities with thioproperazine and pipotiazine, which are members of the phenothiazine class.
Tiotixene is a widely used drug for the treatment of various psychiatric disorders such as schizophrenia, bipolar disorder, mania, and behavioural disturbances. [7] The drug regulates behaviour and thoughts, and can also exhibit an anti-depressive effect. [3] [8]
The side effect profile is similar to related antipsychotic agents, displaying weight gain, mental distress, and inability to sit still. Other possible symptoms include anticholinergic side effects such as insomnia, blurred vision, and dry mouth. [9] [10] Less frequently encountered side effects are drug-induced movement disorders such as Parkinson's syndrome and tardive dyskinesia. [11] [12]
The results of various dose-response studies (10–60 mg) indicate a stimulating effect at lower doses, which diminishes as higher doses are administered. [13] Overall, the efficacy of thiothixene when compared to other antipsychotic drugs was evaluated to be at least as effective regardless of the optimum dosage. [13] [14] [15]
As common with tricyclic psychotherapeutic agents, tiotixene is rapidly and extensively absorbed. [16] Peak serum concentration of the drug is achieved after 1–3 hours. [17] After absorption, the compound and its metabolites are spread widely throughout the body.
The drug's metabolism proceeds rapidly and primarily in the liver. [2] [16] Although N-demethyltiotixene was identified as its major metabolite, the metabolic mechanisms remain elusive. [2] [18] After metabolism, most of the material is excreted through the faeces. [16]
Site | Ki (nM) | Species | Ref |
---|---|---|---|
SERT | 3,162–3,878 | Human | [19] [20] |
NET | 30,200 | Human | [19] [20] |
DAT | 3,630 | Human | [19] [20] |
5-HT1A | 410–912 | Human | [19] [21] [20] |
5-HT1B | 151 | Human | [19] |
5-HT1D | 659 | Human | [19] |
5-HT1E | >10,000 | Human | [19] |
5-HT2A | 50–89 | Human | [21] [20] |
5-HT2C | 1,350–1,400 | Human | [21] [20] |
5-HT3 | 1,860 | Human | [19] [20] |
5-HT5A | 361 | Human | [19] |
5-HT6 | 208–320 | Human | [19] [21] [20] |
5-HT7 | 15.5 | Human | [19] [21] [20] |
α1 | 19 | ND | [20] |
α1A | 11–12 | Human | [19] [21] |
α1B | 35 | Human | [19] |
α2 | 95 | ND | [20] |
α2A | 80 | Human | [19] [21] |
α2B | 50 | Human | [19] [21] |
α2C | 52 | Human | [19] [21] |
β1 | >10,000 | Human | [19] |
β2 | >10,000 | Human | [19] |
D1 | 51–339 | Human | [19] [20] |
D2 | 0.03–1.4 | Human | [19] [21] [22] |
D3 | 0.3–186 | Human | [22] [20] |
D4 | 203–363 | Human | [19] [20] |
D4.2 | 410–685 | Human | [22] |
D5 | 261 | Human | [19] |
H1 | 4.0–12 | Human | [19] [21] [23] |
H2 | 411 | Human | [19] |
H3 | 1,336 | Guinea pig | [19] |
H4 | >10,000 | Human | [19] |
mACh | 3,310 | ND | [20] |
M1 | ≥2,820 | Human | [19] [20] |
M2 | ≥2,450 | Human | [19] [20] |
M3 | ≥5,750 | Human | [19] [21] [20] |
M4 | >10,000 | Human | [19] |
M5 | 5,376 | Human | [19] |
σ | 1,780 | ND | [20] |
Values are Ki (nM). The smaller the value, the more strongly the drug binds to the site. |
Tiotixene shares its mechanism with related thioxanthenes which are all fundamentally used to control schizophrenia. Their mechanism of action involves the inhibition of different receptors, including 5-HT (serotonin), dopaminergic, histaminergic, and adrenergic receptors. [24] Blocking these receptors results in a reduction of synaptic levels of dopamine, serotonin, and other neurotransmitters that are involved with abnormal excitement in the brain during psychoses. [24] [25] This reduction of abnormal neurotransmission activity tends to alleviate the psychotic indications associated with schizophrenia. [26]
Tiotixene acts primarily as a highly potent antagonist of the dopamine D2 and D3 receptors (subnanomolar affinity). [19] It is also an antagonist of the histamine H1, α1-adrenergic, and serotonin 5-HT7 receptors (low nanomolar affinity), as well as of various other receptors to a much lesser extent (lower affinity). [19] It does not have any anticholinergic activity. [19] Antagonism of the D2 receptor is thought to be responsible for the antipsychotic effects of tiotixene.
Thiothixene has demonstrated toxicity in animal studies and isolated human tissue, displaying cytotoxic effects against various cell types. Observed toxic effects included growth inhibition of mouse fibroblasts, inhibition of protein synthesis by human glioma cells, and inhibition of leukocyte DNA synthesis. [27] [28]
Other compounds within the thioxanthene class have demonstrated hepatotoxicity in rodent experiments, and although anecdotal reports of thiothixene-induced liver failure exist, scientific data regarding the correlation lacks. [29] The absence of observational or longitudinal human studies on thiothixene in published literature precludes drawing conclusions regarding the significance of toxic effects at therapeutic dosages.
Thiothixene is a tricyclic compound consisting of a thioxanthene core with a (4-methylpiperazin-1-yl)propylidene side chain. [30] Several methods for the synthesis of thiothixene are described in literature, which all rely on varying thioxanthone derivatives upon which the (4-methylpiperazin-1-yl)propylidene side chain is constructed. [2] [16] [31]
Wyatt et al. described the synthesis of thiothixene via four different routes, three of which originated from the previous findings from Muren et al. One method described the synthesis of thiothixene by acetylation of 9-lithio-N,N-dimethylthioxanthene-2-sulfonamide. After acetylation, a condensation reaction, and an amine exchange the intermediate ketone was obtained. This intermediate was then converted into E- and Z-thiothixene through reduction with NaBH4, followed by dehydration using POCl3-pyridine. [2] [31]
Another method described by Muren et al. was performed using N,N-dimethylsulfamoyl-Z-thioxanthen-9-one as starting material. The introduction of the piperazinylpropylidene side chain was performed by a Wittig reaction. Following this, the methylation of the piperazinylpropylidene side chain was executed using various alkylating agents, yielding E- and Z-thiothixene. [31]
The last method described by Wyatt et al, adapted from the study described by Muren and Bloom, used potassium benzenethiolate and 2-bromo-5-dimethylsulfamoylbenzoic acid as starting material. The resulting acid was treated with copper and PPA to form the thioxanthone intermediate. This ketone intermediate was then treated with the addition of the piperazinylpropylidene side chain and the loss of a water molecule to form Z- and E-Thiothixene. [2]
The fourth method originating from D.C Hobbs involved condensing thiophenol with 2-chloro-5-dimethylsulfamoylbenzoic acid in an alkaline DMF solution at 130–140 °C. After a ring closure reaction with polyphosphoric acid at 70 °C, the ketone intermediate (N,N-dimethylsulfamoyl-Z-thioxanthen-9-one) was obtained. A wittig reaction was employed to connect the intermediate with the piperazinylpropylidene side chain, leading to the formation of both Z- and E-thiothixene isomers. [16] [32]
Antipsychotics, previously known as neuroleptics and major tranquilizers, are a class of psychotropic medication primarily used to manage psychosis, principally in schizophrenia but also in a range of other psychotic disorders. They are also the mainstay, together with mood stabilizers, in the treatment of bipolar disorder. Moreover, they are also used as adjuncts in the treatment of treatment-resistant major depressive disorder.
Neuroleptic malignant syndrome (NMS) is a rare but life-threatening reaction that can occur in response to antipsychotic (neuroleptic) medications. Symptoms include high fever, confusion, rigid muscles, variable blood pressure, sweating, and fast heart rate. Complications may include rhabdomyolysis, high blood potassium, kidney failure, or seizures.
Chlorpromazine (CPZ), marketed under the brand names Thorazine and Largactil among others, is an antipsychotic medication. It is primarily used to treat psychotic disorders such as schizophrenia. Other uses include the treatment of bipolar disorder, severe behavioral problems in children including those with attention deficit hyperactivity disorder, nausea and vomiting, anxiety before surgery, and hiccups that do not improve following other measures. It can be given orally, by intramuscular injection, or intravenously.
Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the treatment of schizophrenia, tics in Tourette syndrome, mania in bipolar disorder, delirium, agitation, acute psychosis, and hallucinations from alcohol withdrawal. It may be used by mouth or injection into a muscle or a vein. Haloperidol typically works within 30 to 60 minutes. A long-acting formulation may be used as an injection every four weeks by people with schizophrenia or related illnesses, who either forget or refuse to take the medication by mouth.
The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs largely introduced after the 1970s and used to treat psychiatric conditions. Some atypical antipsychotics have received regulatory approval for schizophrenia, bipolar disorder, irritability in autism, and as an adjunct in major depressive disorder.
Risperidone, sold under the brand name Risperdal among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder, as well as irritability associated with autism. It is taken either by mouth or by injection. The injectable versions are long-acting and last for 2–4 weeks.
Ziprasidone, sold under the brand name Geodon among others, is an atypical antipsychotic used to treat schizophrenia and bipolar disorder. It may be used by mouth and by injection into a muscle (IM). The IM form may be used for acute agitation in people with schizophrenia.
Olanzapine, sold under the brand name Zyprexa among others, is an atypical antipsychotic primarily used to treat schizophrenia and bipolar disorder. For schizophrenia, it can be used for both new-onset disease and long-term maintenance. It is taken by mouth or by injection into a muscle.
Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).
Amoxapine, sold under the brand name Asendin among others, is a tricyclic antidepressant (TCA). It is the N-demethylated metabolite of loxapine. Amoxapine first received marketing approval in the United States in 1980, approximately 10 to 20 years after most of the other TCAs were introduced in the United States.
A dopamine antagonist, also known as an anti-dopaminergic and a dopamine receptor antagonist (DRA), is a type of drug which blocks dopamine receptors by receptor antagonism. Most antipsychotics are dopamine antagonists, and as such they have found use in treating schizophrenia, bipolar disorder, and stimulant psychosis. Several other dopamine antagonists are antiemetics used in the treatment of nausea and vomiting.
Chlorprothixene, sold under the brand name Truxal among others, is a typical antipsychotic of the thioxanthene group.
Amisulpride is an antiemetic and antipsychotic medication used at lower doses intravenously to prevent and treat postoperative nausea and vomiting; and at higher doses by mouth to treat schizophrenia and acute psychotic episodes. It is sold under the brand names Barhemsys and Solian, Socian, Deniban and others. At very low doses it is also used to treat dysthymia.
Sulpiride, sold under the brand name Dogmatil among others, is an atypical antipsychotic medication of the benzamide class which is used mainly in the treatment of psychosis associated with schizophrenia and major depressive disorder, and is sometimes used in low dosage to treat anxiety and mild depression. Sulpiride is commonly used in Asia, Central America, Europe, South Africa and South America. Levosulpiride is its purified levo-isomer and is sold in India for similar purposes. It is not approved in the United States, Canada, or Australia. The drug is chemically and clinically similar to amisulpride.
Zotepine is an atypical antipsychotic drug indicated for acute and chronic schizophrenia. It has been used in Germany since 1990 and Japan since 1982.
Melperone is an atypical antipsychotic of the butyrophenone chemical class, making it structurally related to the typical antipsychotic haloperidol. It first entered clinical use in 1960s.
Perospirone (Lullan) is an atypical antipsychotic of the azapirone family. It was introduced in Japan by Dainippon Sumitomo Pharma in 2001 for the treatment of schizophrenia and acute cases of bipolar mania.
Lurasidone, sold under the brand name Latuda among others, is an antipsychotic medication used to treat schizophrenia and bipolar disorder. It is taken by mouth.
Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.
Clocapramine, also known as 3-chlorocarpipramine, is an atypical antipsychotic of the iminostilbene class which was introduced in Japan in 1974 by Yoshitomi for the treatment of schizophrenia. In addition to psychosis, clocapramine has also been used to augment antidepressants in the treatment of anxiety and panic.