SB-236057

Last updated
SB-236057
SB236057 structure.png
Clinical data
ATC code
  • none
Identifiers
  • 1'-ethyl-5-[2'-methyl-4'-(5-methyl-1,3,4-oxadiazolyl-2-yl)biphenyl-4-carbonyl]-2,3,6,7-tetrahydrospiro(furo[2,3-f]indole-3,4'-piperidine)
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C33H34N4O3
Molar mass 534.660 g·mol−1
3D model (JSmol)
  • n5nc(C)oc5-c(cc2C)ccc2-c6ccc(cc6)C(=O)N(CCc1cc3OC7)c1cc3C7(CC4)CCN4CC
  • InChI=1S/C33H34N4O3/c1-4-36-15-12-33(13-16-36)20-39-30-18-25-11-14-37(29(25)19-28(30)33)32(38)24-7-5-23(6-8-24)27-10-9-26(17-21(27)2)31-35-34-22(3)40-31/h5-10,17-19H,4,11-16,20H2,1-3H3
  • Key:WXAKEEQOWUHGCI-UHFFFAOYSA-N

SB-236057 is a compound which is a potent and selective inverse agonist for the serotonin receptor 5-HT1B, acting especially at 5-HT1B autoreceptors on nerve terminals. It produces a rapid increase in serotonin levels in the brain, and was originally researched as a potential antidepressant. [1] [2] However subsequent research found that SB-236,057 also acts as a potent teratogen, producing severe musculoskeletal birth defects when rodents were exposed to it during pregnancy. This has made it of little use for research into its original applications, yet has made it useful for studying embryonic development instead. [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Serotonin receptor agonist</span> Neurotransmission-modulating substance

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

5-HT<sub>1B</sub> receptor Mammalian protein found in Homo sapiens

5-hydroxytryptamine receptor 1B also known as the 5-HT1B receptor is a protein that in humans is encoded by the HTR1B gene. The 5-HT1B receptor is a 5-HT receptor subtype.

5-HT<sub>1D</sub> receptor Serotonin receptor which affects locomotion and anxiety in humans

5-hydroxytryptamine (serotonin) receptor 1D, also known as HTR1D, is a 5-HT receptor, but also denotes the human gene encoding it. 5-HT1D acts on the central nervous system, and affects locomotion and anxiety. It also induces vasoconstriction in the brain.

<span class="mw-page-title-main">8-OH-DPAT</span> Chemical compound

8-OH-DPAT is a research chemical of the aminotetralin chemical class which was developed in the 1980s and has been widely used to study the function of the 5-HT1A receptor. It was one of the first major 5-HT1A receptor full agonists to have been discovered.

5-HT<sub>1E</sub> receptor Protein-coding gene in the species Homo sapiens

5-hydroxytryptamine (serotonin) 1e receptor (5-HT1e) is a highly expressed human G-protein coupled receptor that belongs to the 5-HT1e receptor family. The human gene is denoted as HTR1E.

5-HT<sub>5A</sub> receptor Protein-coding gene in the species Homo sapiens

5-Hydroxytryptamine (serotonin) receptor 5A, also known as HTR5A, is a protein that in humans is encoded by the HTR5A gene. Agonists and antagonists for 5-HT receptors, as well as serotonin uptake inhibitors, present promnesic (memory-promoting) and/or anti-amnesic effects under different conditions, and 5-HT receptors are also associated with neural changes.

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

<span class="mw-page-title-main">5-Carboxamidotryptamine</span> Chemical compound

5-Carboxamidotryptamine (5-CT) is a tryptamine derivative closely related to the neurotransmitter serotonin.

<span class="mw-page-title-main">AR-A000002</span> Chemical compound

AR-A000002, also known as AZD-8129, is a drug which is one of the first compounds developed to act as a selective antagonist for the serotonin receptor 5-HT1B, with approximately 10x selectivity for 5-HT1B over the closely related 5-HT1D receptor. It has been shown to produce sustained increases in levels of serotonin in the brain, and has anxiolytic effects in animal studies.

<span class="mw-page-title-main">CP-94253</span> Potent and selective serotonin 5-HT1B receptor agonist

CP-94253 is a drug which acts as a potent and selective serotonin 5-HT1B receptor agonist, with approximately 25× and 40× selectivity over the closely related 5-HT1D and 5-HT1A receptors. It has a range of behavioral effects, based on animal testing. The effects include the following: promoting wakefulness by increasing dopamine release in the brain; reducing food intake and promoting satiety; enhancing the reinforcing effects of cocaine; and possible antidepressant effects. A recent study found that "Regardless of sex, CP94253 decreased cocaine intake after abstinence and during resumption of SA [self-administration] and decreased cue reactivity" suggesting that agonism of the inhibitory 5-HT2B receptors may diminish the cognitive reward of cocaine usage and increased use of the drug without a period of abstinence may be a product of test subjects trying to achieve a previously rewarding experience through larger dosages of cocaine.

<span class="mw-page-title-main">SB-216641</span> Chemical compound

SB-216641 is a drug which is a selective antagonist for the serotonin receptor 5-HT1B, with around 25x selectivity over the closely related 5-HT1D receptor. It is used in scientific research, and has demonstrated anxiolytic effects in animal studies.

<span class="mw-page-title-main">GR-127935</span> Drug

GR-127935 is a drug which acts as a selective antagonist at the serotonin receptors 5-HT1B and 5-HT1D. It has little effect when given by itself but blocks the antiaggressive effect of 5-HT1B agonists, and alters release of serotonin in the brain, as well as reducing drug-seeking behaviour in cocaine addicted rats.

<span class="mw-page-title-main">Roxindole</span> Dopaminergic & serotonergic drug developed for schizophrenia treatment

Roxindole (EMD-49,980) is a dopaminergic and serotonergic drug which was originally developed by Merck KGaA for the treatment of schizophrenia. In clinical trials its antipsychotic efficacy was only modest but it was unexpectedly found to produce potent and rapid antidepressant and anxiolytic effects. As a result, roxindole was further researched for the treatment of depression instead. It has also been investigated as a therapy for Parkinson's disease and prolactinoma.

<span class="mw-page-title-main">CP-93129</span> Chemical compound

CP-93129 is a drug which acts as a potent and selective serotonin 5-HT1B receptor agonist, with approximately 150x and 200x selectivity over the closely related 5-HT1D and 5-HT1A receptors. It is used in the study of 5-HT1B receptors in the brain, particularly their role in modulating the release of other neurotransmitters.

<span class="mw-page-title-main">SB-243213</span> Chemical compound

SB-243213 is a research chemical which acts as a selective inverse agonist for the 5HT2C receptor and has anxiolytic effects. It has better than 100x selectivity for 5-HT2C over all other receptor subtypes tested, and a longer duration of action compared to older 5-HT2C antagonist ligands.

<span class="mw-page-title-main">LY-456219</span> Chemical compound

LY-456219 is a potent and selective serotonin 5-HT1D receptor antagonist which has been used in research to study the function of presynaptic 5-HT1D autoreceptors. LY-456219 lacks significant affinity for the 5-HT1B, α1 adrenergic, and dopamine D2 receptors. It is an enantiomer of LY-456220.

<span class="mw-page-title-main">LY-456220</span> Chemical compound

LY-456220 is a potent and selective serotonin 5-HT1D receptor antagonist which has been used in research to study the function of presynaptic 5-HT1D autoreceptors. LY-456220 lacks significant affinity for the 5-HT1B, α1 adrenergic, and dopamine D2 receptors. It is an enantiomer of LY-456219.

<span class="mw-page-title-main">GR-55562</span> 5-HT1B and 5-HT1D antagonist

GR-55562 is a selective serotonin 5-HT1B and 5-HT1D receptor antagonist. It is one of several selective serotonin 5-HT1B receptor antagonists used in scientific research.

<span class="mw-page-title-main">NAS-181</span> Serotonin 5-HT1B receptor antagonist

NAS-181, also known as MCOMM, is a selective rodent serotonin 5-HT1B receptor antagonist which is used in scientific research.

References

  1. Middlemiss DN, Göthert M, Schlicker E, Scott CM, Selkirk JV, Watson J, et al. (June 1999). "SB-236057, a selective 5-HT1B receptor inverse agonist, blocks the 5-HT human terminal autoreceptor". European Journal of Pharmacology. 375 (1–3): 359–65. doi:10.1016/s0014-2999(99)00262-9. PMID   10443589.
  2. Roberts C, Watson J, Price GW, Middlemiss DN (2006). "SB-236057-A: a selective 5-HT1B receptor inverse agonist". CNS Drug Reviews. 7 (4): 433–44. doi:10.1111/j.1527-3458.2001.tb00209.x. PMC   6741665 . PMID   11830759.
  3. Augustine-Rauch KA, Zhang QJ, Posobiec L, Mirabile R, DeBoer LS, Solomon HM, Wier PJ (October 2004). "SB-236057: Critical window of sensitivity study and embryopathy of a potent musculoskeletal teratogen". Birth Defects Research. Part A, Clinical and Molecular Teratology. 70 (10): 773–88. doi:10.1002/bdra.20079. PMID   15472921.
  4. Augustine-Rauch KA, Zhang QJ, Leonard JL, Chadderton A, Welsh MJ, Rami HK, et al. (October 2004). "Evidence for a molecular mechanism of teratogenicity of SB-236057, a 5-HT1B receptor inverse agonist that alters axial formation". Birth Defects Research. Part A, Clinical and Molecular Teratology. 70 (10): 789–807. doi:10.1002/bdra.20076. PMID   15472891.