Dotarizine

Last updated
Dotarizine
Dotarizine.svg
Clinical data
Other namesDotarizine
ATC code
  • none
Identifiers
  • 1-[diphenylmethyl]-4-[3-(2-phenyl-1,3-dioxolan-2-yl)propyl]piperazine
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C29H34N2O2
Molar mass 442.603 g·mol−1
3D model (JSmol)
  • C1CN(CCN1CCCC2(OCCO2)C3=CC=CC=C3)C(C4=CC=CC=C4)C5=CC=CC=C5
  • InChI=1S/C29H34N2O2/c1-4-11-25(12-5-1)28(26-13-6-2-7-14-26)31-21-19-30(20-22-31)18-10-17-29(32-23-24-33-29)27-15-8-3-9-16-27/h1-9,11-16,28H,10,17-24H2 X mark.svgN
  • Key:LRMJAFKKJLRDLE-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Dotarizine is a drug used in the treatment of migraine, [1] which acts as a calcium channel blocker, [2] and also as an antagonist at the 5HT2A receptor, and to a lesser extent at the 5HT1A and 5HT2C receptors. [3] [4] The anti-migraine action is thought to be due to its action as a vasodilator, [5] [6] but it also has some anxiolytic effects [7] and blocks amnesia produced by electroconvulsive shock in animals. [8]

Related Research Articles

<span class="mw-page-title-main">Imidazopyridine</span> Class of compounds

An imidazopyridine is a nitrogen containing heterocycle that is also a class of drugs that contain this same chemical substructure. In general, they are GABAA receptor agonists, however recently proton pump inhibitors, aromatase inhibitors, NSAIDs and other classes of drugs in this class have been developed as well. Despite usually being similar to them in effect, they are not chemically related to benzodiazepines. As such, GABAA-agonizing imidazopyridines, pyrazolopyrimidines, and cyclopyrrones are sometimes grouped together and referred to as "nonbenzodiazepines." Imidazopyridines include:

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

<span class="mw-page-title-main">Methysergide</span> Chemical compound

Methysergide, sold under the brand names Deseril and Sansert, is a monoaminergic medication of the ergoline and lysergamide groups which is used in the prophylaxis and treatment of migraine and cluster headaches. It has been withdrawn from the market in the United States and Canada due to adverse effects. It is taken by mouth.

<i>meta</i>-Chlorophenylpiperazine Stimulant

meta-Chlorophenylpiperazine (mCPP) is a psychoactive drug of the phenylpiperazine class. It was initially developed in the late-1970s and used in scientific research before being sold as a designer drug in the mid-2000s. It has been detected in pills touted as legal alternatives to illicit stimulants in New Zealand and pills sold as "ecstasy" in Europe and the United States.

Neurokinin 1 (NK1) antagonists (-pitants) are a novel class of medications that possesses unique antidepressant, anxiolytic, and antiemetic properties. NK-1 antagonists boost the efficacy of 5-HT3 antagonists to prevent nausea and vomiting. The discovery of neurokinin 1 (NK1) receptor antagonists was a turning point in the prevention of nausea and vomiting associated with cancer chemotherapy.

<span class="mw-page-title-main">P2Y receptor</span> Subclass of purinergic P2 receptors

P2Y receptors are a family of purinergic G protein-coupled receptors, stimulated by nucleotides such as adenosine triphosphate, adenosine diphosphate, uridine triphosphate, uridine diphosphate and UDP-glucose.To date, 8 P2Y receptors have been cloned in humans: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptors, or 5-HT receptors, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarization and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

<span class="mw-page-title-main">Neurotensin receptor 2</span> Protein-coding gene in the species Homo sapiens

Neurotensin receptor type 2 is a protein that in humans is encoded by the NTSR2 gene.

A cholecystokinin receptor antagonist is a specific type of receptor antagonist which blocks the receptor sites for the peptide hormone cholecystokinin (CCK).

<span class="mw-page-title-main">BAY 38-7271</span> Chemical compound

Originally synthesized by chemist Wayne E. Kenney, BAY 38-7271 (KN 38-7271) is a drug which is a cannabinoid receptor agonist developed by Bayer AG. It has analgesic and neuroprotective effects and is used in scientific research, with proposed uses in the treatment of traumatic brain injury. It is a full agonist with around the same potency as CP 55,940 in animal studies, and has fairly high affinity for both CB1 and CB2 receptors, with Ki values of 2.91nM at CB1 and 4.24nM at CB2. It has been licensed to KeyNeurotek Pharmaceuticals for clinical development, and was in Phase II trials in 2008 but its development appears to have stopped.

<span class="mw-page-title-main">Cyamemazine</span> Antipsychotic medication

Cyamemazine (Tercian), also known as cyamepromazine, is a typical antipsychotic drug of the phenothiazine class which was introduced by Theraplix in France in 1972 and later in Portugal as well.

<span class="mw-page-title-main">Rhynchophylline</span> Chemical compound

Rhynchophylline is an alkaloid found in certain Uncaria species (Rubiaceae), notably Uncaria rhynchophylla and Uncaria tomentosa. It also occurs in the leaves of Mitragyna speciosa (kratom), a tree native to Thailand. Chemically, it is related to the alkaloid mitragynine.

<span class="mw-page-title-main">BIIE-0246</span> Chemical compound

BIIE-0246 is a drug used in scientific research which acts as a potent and selective antagonist for the Neuropeptide Y receptor Y2. It was one of the first non-peptide Y2-selective antagonists developed, and remains among the most widely used tools for studying this receptor. It has been used to demonstrate a role for the Y2 subtype as a presynaptic autoreceptor limiting further neuropeptide Y release, as well as modulating dopamine and acetylcholine release. It has also been shown to produce several behavioural effects in animals, including reducing alcohol consumption in addicted rats and anxiolytic effects, although while selective Y2 agonists are expected to be useful as anorectics, BIIE-0246 did not appear to increase appetite when administered alone.

<span class="mw-page-title-main">Eptapirone</span> Chemical compound

Eptapirone (F-11,440) is a very potent and highly selective 5-HT1A receptor full agonist of the azapirone family. Its affinity for the 5-HT1A receptor was reported to be 4.8 nM (Ki), and its intrinsic activity approximately equal to that of serotonin.

<span class="mw-page-title-main">Pruvanserin</span> Chemical compound

Pruvanserin is a selective 5-HT2A receptor antagonist which was under development by Eli Lilly and Company for the treatment of insomnia. It was in phase II clinical trials in 2008 but appears to have been discontinued as it is no longer in the company's development pipeline. In addition to its sleep-improving properties, pruvanserin has also been shown to have antidepressant, anxiolytic, and working memory-enhancing effects in animal studies.

<span class="mw-page-title-main">Ro5-4864</span> Chemical compound

Ro5-4864 (4'-chlorodiazepam) is a drug which is a benzodiazepine derivative of diazepam. However unlike most benzodiazepine derivatives, Ro5-4864 lacks affinity for GABAA receptors and lacks typical benzodiazepine effects, instead being sedative yet also convulsant and anxiogenic in effects. Ro5-4864 was found to be a potent ligand for the "peripheral benzodiazepine receptor", later renamed to mitochondrial translocator protein 18kDa (TSPO). Despite its convulsant effects, at lower doses Ro5-4864 has proved to be neuroprotective and has become widely used for research into the role of the TSPO protein in neurotoxicity. In vitro studies and rodent models also suggest the possibility of analgesic, antidepressant, cardioprotective, and anti-cancer effects.

<span class="mw-page-title-main">SR-144,528</span> Chemical compound

SR144528 is a drug that acts as a potent and highly selective CB2 receptor inverse agonist, with a Ki of 0.6 nM at CB2 and 400 nM at the related CB1 receptor. It is used in scientific research for investigating the function of the CB2 receptor, as well as for studying the effects of CB1 receptors in isolation, as few CB1 agonists that do not also show significant activity as CB2 agonists are available. It has also been found to be an inhibitor of sterol O-acyltransferase, an effect that appears to be independent from its action on CB2 receptors.

<span class="mw-page-title-main">Lomerizine</span> Chemical compound

Lomerizine (INN) is a diphenylpiperazine class L-type and T-type calcium channel blocker. This drug is currently used clinically for the treatment of migraines, while also being used experimentally for the treatment of glaucoma and optic nerve injury.

<span class="mw-page-title-main">CP-122,288</span> Chemical compound

CP-122,288 is a drug which acts as a potent and selective agonist for the 5-HT1B, 5-HT1D and 5-HT1F serotonin receptor subtypes. It is a derivative of the migraine medication sumatriptan, but while CP-122,288 is 40,000 times more potent than sumatriptan as an inhibitor of neurogenic inflammation and plasma protein extravasation, it is only twice as potent as a constrictor of blood vessels. In human trials, CP-122,288 was not found to be effective as a treatment for migraine, but its selectivity for neurogenic anti-inflammatory action over vasoconstriction has made it useful for research into the underlying causes of migraine.

References

  1. Ruiz-Nuño A, Villarroya M, Cano-Abad M, Rosado A, Balfagón G, López MG, García AG (January 2001). "Mechanisms of blockade by the novel migraine prophylactic agent, dotarizine, of various brain and peripheral vessel contractility". European Journal of Pharmacology. 411 (3): 289–99. doi:10.1016/S0014-2999(00)00897-9. PMID   11164387.
  2. Ruiz-Nuño A, Mayorgas I, Hernández-Guijo JM, Olivares R, García AG, Gandía L (November 2003). "Antimigraine dotarizine blocks P/Q Ca2+ channels and exocytosis in a voltage-dependent manner in chromaffin cells". European Journal of Pharmacology. 481 (1): 41–50. doi:10.1016/j.ejphar.2003.09.013. PMID   14637173.
  3. Farré M, Roset PN, Llorente M, Márquez M, Albet C, Pérez JA, et al. (June 1997). "Clinical pharmacokinetics and tolerability of dotarizine in healthy subjects after single and multiple oral administration". Methods and Findings in Experimental and Clinical Pharmacology. 19 (5): 343–50. PMID   9379783.
  4. Montiel C, Herrero CJ, García-Palomero E, Renart J, García AG, Lomax RB (August 1997). "Serotonergic effects of dotarizine in coronary artery and in oocytes expressing 5-HT2 receptors". European Journal of Pharmacology. 332 (2): 183–93. doi:10.1016/S0014-2999(97)01073-X. PMID   9286620.
  5. Kuridze N, Gajkowska B, Czernicki Z, Jurkiewicz J, Cervos-Navarro J (1998). "The effect of Dotarizine--(Ca2+ channel blocker)--on vascular reactivity and ultrastructure of cerebral capillaries in animals subjected to anoxia". Folia Neuropathologica. 36 (2): 101–8. PMID   9757621.
  6. Kuridze N, Czernicki Z, Jarus-Dziedzic K, Jurkiewicz J, Cervos-Navarro J (April 2000). "Regional differences of cerebrovascular reactivity effected by calcium channel blocker - dotarizine". Journal of the Neurological Sciences. 175 (1): 13–6. doi:10.1016/S0022-510X(00)00275-6. PMID   10785251. S2CID   30117433.
  7. Petkov VD, Belcheva S, Konstantinova E (December 1995). "Anxiolytic effects of dotarizine, a possible antimigraine drug". Methods and Findings in Experimental and Clinical Pharmacology. 17 (10): 659–68. PMID   9053586.
  8. Lazarova M, Petkova B, Petkov VD (1995). "Effect of dotarizine on electroconvulsive shock or pentylenetetrazol-induced amnesia and on seizure reactivity in rats". Methods and Findings in Experimental and Clinical Pharmacology. 17 (1): 53–8. PMID   7623521.