Clinical data | |
---|---|
Trade names | Sporanox, Sporaz, Orungal, others |
Other names | ITZ |
AHFS/Drugs.com | Monograph |
MedlinePlus | a692049 |
License data |
|
Pregnancy category |
|
Routes of administration | By mouth, solution), vaginal suppository, intravenous |
ATC code | |
Legal status | |
Legal status | |
Pharmacokinetic data | |
Bioavailability | ~55%, maximal if taken with full meal |
Protein binding | 99.8% |
Metabolism | Extensive in liver (CYP3A4) |
Metabolites | Hydroxy-itraconazole, keto-itraconazole, N-desalkyl-itraconazole [4] |
Elimination half-life | 21 hours |
Excretion | Kidney (35%), faeces (54%) [5] |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.123.596 |
Chemical and physical data | |
Formula | C35H38Cl2N8O4 |
Molar mass | 705.64 g·mol−1 |
3D model (JSmol) | |
Chirality | Racemic mixture |
Melting point | 165 [6] °C (329 °F) |
Solubility in water | 7.8 ± 0.4 × 10−6 mol/L (pH 1.6) [6] mg/mL (20 °C) |
| |
| |
(verify) |
Itraconazole, sometimes abbreviated ITZ, is an antifungal medication used to treat a number of fungal infections. [7] This includes aspergillosis, blastomycosis, coccidioidomycosis, histoplasmosis, and paracoccidioidomycosis. [7] It may be given by mouth or intravenously. [7]
Common side effects include nausea, diarrhea, abdominal pain, rash, and headache. [7] Severe side effects may include liver problems, heart failure, Stevens–Johnson syndrome and allergic reactions including anaphylaxis. [7] It is unclear if use during pregnancy or breastfeeding is safe. [1] It is in the triazole family of medications. [7] It stops fungal growth by affecting the cell membrane or affecting their metabolism. [7]
Itraconazole was patented in 1978 and approved for medical use in the United States in 1992. [7] [8] It is on the World Health Organization's List of Essential Medicines. [9]
Recent research works suggest itraconazole (ITZ) could also be used in the treatment of cancer by inhibiting the hedgehog pathway [10] in a similar way to sonidegib.
Itraconazole has a broader spectrum of activity than fluconazole (but not as broad as voriconazole or posaconazole). In particular, it is active against Aspergillus , which fluconazole is not. It is also licensed for use in blastomycosis, sporotrichosis, histoplasmosis, and onychomycosis. Itraconazole is over 99% protein-bound and has virtually no penetration into cerebrospinal fluid. Therefore, it should not be used to treat meningitis or other central nervous system infections. [11] According to the Johns Hopkins Abx Guide, it has "negligible CSF penetration, however treatment has been successful for cryptococcal and coccidioidal meningitis". [12]
It is also prescribed for systemic infections, such as aspergillosis, candidiasis, and cryptococcosis, where other antifungal drugs are inappropriate or ineffective.[ citation needed ]
Itraconazole has been explored as an anticancer agent for patients with basal cell carcinoma, non-small cell lung cancer, glioblastoma and prostate cancer, [13] [14] For example, in a phase II study involving men with advanced prostate cancer, high-dose itraconazole (600 mg/day) was associated with significant PSA responses and a delay in tumor progression. Itraconazole also showed activity in a phase II trial in men with non-small cell lung cancer when it was combined with the chemotherapy agent, pemetrexed. [15] [16] [17] A recent review also highlights its use topically and orally in conjunction with other chemotherapeutic agents for advanced and metastatic basal cell carcinomas that cannot be treated surgically. [18]
Itraconazole is produced as blue 22 mm (0.87 in) capsules with tiny 1.5 mm (0.059 in) blue pellets inside. Each capsule contains 100 mg and is usually taken twice a day at twelve-hour intervals. The Sporanox brand of itraconazole has been developed and marketed by Janssen Pharmaceutica, a subsidiary of Johnson & Johnson.[ citation needed ] The three-layer structure of these blue capsules is complex because itraconazole is insoluble and is sensitive to pH. The complicated procedure not only requires a specialized machine to create it, but also the method used has manufacturing problems. Also, the pill is quite large, making it difficult for many patients to swallow. Parts of the processes of creating Sporanox were discovered by the Korean Patent Laid-open No. 10-2001-2590. [19] The tiny blue pellets contained in the capsule are manufactured in Beerse, Belgium. [19] [20]
The oral solution is better absorbed. The cyclodextrin contained in the oral solution can cause an osmotic diarrhea, and if this is a problem, then half the dose can be given as oral solution and half as capsule to reduce the amount of cyclodextrin given.[ citation needed ] "Sporanox" itraconazole capsules should always be taken with food, as this improves absorption, however the manufacturers of "Lozanoc" assert that it may be taken "without regard to meals". [21] Itraconazole oral solution should be taken an hour before food, or two hours after food (and likewise if a combination of capsules and oral solution are used). Itraconazole may be taken with orange juice or cola, as absorption is also improved by acid. Absorption of itraconazole is impaired when taken with an antacid, H2 blocker or proton pump inhibitor.[ citation needed ]
Itraconazole is a relatively well-tolerated drug (although not as well tolerated as fluconazole or voriconazole) and the range of adverse effects it produces is similar to the other azole antifungals: [22]
The cyclodextrin used to make the syrup preparation can cause diarrhea. Side effects that may indicate a greater problem include:[ citation needed ]
The following drugs should not be taken with itraconazole: [23]
The mechanism of action of itraconazole is the same as the other azole antifungals: it inhibits the fungal-mediated synthesis of ergosterol, via inhibition of lanosterol 14α-demethylase. Because of its ability to inhibit cytochrome P450 3A4 CC-3, caution should be used when considering interactions with other medications. [25]
Itraconazole is pharmacologically distinct from other azole antifungal agents in that it is the only inhibitor in this class that has been shown to inhibit both the hedgehog signaling pathway [26] [27] and angiogenesis. [28] [29] These distinct activities are unrelated to inhibition of the cytochrome P450 lanosterol 14 alpha-demethylase and the exact molecular targets responsible remain unidentified. Functionally, the antiangiogenic activity of itraconazole has been shown to be linked to inhibition of glycosylation, VEGFR2 phosphorylation, [29] trafficking, [30] and cholesterol biosynthesis pathways. [28] Evidence suggests the structural determinants for inhibition of hedgehog signaling by itraconazole are recognizably different from those associated with antiangiogenic activity. [31]
Itraconazole, like cyclosporine, quinidine, and clarithromycin, can inhibit P-glycoprotein, causing drug interactions by reducing elimination and increasing absorption of organic cation drugs. With conventional itraconazole preparations serum levels can vary greatly between patients, often resulting in serum concentrations lower than the therapeutic index. [32] It has therefore been conventionally advised that patients take itraconazole after a fatty meal rather than prior to eating. [33] [34]
A product (Lozanoc) licensed through the European union decentralised procedure [35] has increased bioavailability, decreased sensitivity to co ingestion of food, and hence decreased variability of serum levels.
The itraconazole molecule has three chiral carbons. The two chiral centers in the dioxolane ring are fixed in relation to one another, and the triazolomethylene and aryloxymethylene dioxolane-ring substituents are always cis to each other. The clinical formulation is a 1:1:1:1 mixture of four stereoisomers (two enantiomeric pairs). [36] [37]
Itraconazole was approved for medical use in the United States in 1992. [38]
It was designated an orphan drug by both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). [39] [40] [41] [42] [43]
Ketoconazole, sold under the brand name Nizoral among others, is an antiandrogen, antifungal, and antiglucocorticoid medication used to treat a number of fungal infections. Applied to the skin it is used for fungal skin infections such as tinea, cutaneous candidiasis, pityriasis versicolor, dandruff, and seborrheic dermatitis. Taken by mouth it is a less preferred option and only recommended for severe infections when other agents cannot be used. Other uses include treatment of excessive male-patterned hair growth in women and Cushing's syndrome.
An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels (angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical drugs or diet.
Axitinib, sold under the brand name Inlyta, is a small molecule tyrosine kinase inhibitor developed by Pfizer. It has been shown to significantly inhibit growth of breast cancer in animal (xenograft) models and has shown partial responses in clinical trials with renal cell carcinoma (RCC) and several other tumour types.
Neratinib (INN), sold under the brand name Nerlynx, is a tyrosine kinase inhibitor anti-cancer medication used for the treatment of breast cancer.
A Janus kinase inhibitor, also known as JAK inhibitor or jakinib, is a type of immune modulating medication, which inhibits the activity of one or more of the Janus kinase family of enzymes, thereby interfering with the JAK-STAT signaling pathway in lymphocytes.
Crizotinib, sold under the brand name Xalkori among others, is an anti-cancer medication used for the treatment of non-small cell lung carcinoma (NSCLC). Crizotinib inhibits the c-Met/Hepatocyte growth factor receptor (HGFR) tyrosine kinase, which is involved in the oncogenesis of a number of other histological forms of malignant neoplasms. It also acts as an ALK and ROS1 inhibitor.
Cabozantinib, sold under the brand names Cometriq and Cabometyx among others, is an anti-cancer medication used to treat medullary thyroid cancer, renal cell carcinoma, and hepatocellular carcinoma. It is a small-molecule tyrosine-kinase inhibitor (TKI) of c-Met (HGFR) and VEGFR2, and also inhibits AXL, RET, and FLT3. It was discovered and developed by Exelixis Inc.
Vismodegib, sold under the brand name Erivedge, is a medication used for the treatment of basal-cell carcinoma (BCC). The approval of vismodegib on January 30, 2012, represents the first Hedgehog signaling pathway targeting agent to gain U.S. Food and Drug Administration (FDA) approval. The drug is also undergoing clinical trials for metastatic colorectal cancer, small-cell lung cancer, advanced stomach cancer, pancreatic cancer, medulloblastoma and chondrosarcoma as of June 2011. The drug was developed by the biotechnology/pharmaceutical company Genentech.
Brigatinib, sold under the brand name Alunbrig among others, is a small-molecule targeted cancer therapy being developed by Ariad Pharmaceuticals, Inc. Brigatinib acts as both an anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR) inhibitor.
Ibrutinib, sold under the brand name Imbruvica among others, is a small molecule drug that inhibits B-cell proliferation and survival by irreversibly binding the protein Bruton's tyrosine kinase (BTK). Blocking BTK inhibits the B-cell receptor pathway, which is often aberrantly active in B cell cancers. Ibrutinib is therefore used to treat such cancers, including mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström's macroglobulinemia. Ibrutinib also binds to C-terminal Src Kinases. These are off-target receptors for the BTK inhibitor. Ibrutinib binds to these receptors and inhibits the kinase from promoting cell differentiation and growth. This leads to many different side effects like left atrial enlargement and atrial fibrillation during the treatment of Chronic Lymphocytic Leukemia.
mTOR inhibitors are a class of drugs used to treat several human diseases, including cancer, autoimmune diseases, and neurodegeneration. They function by inhibiting the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.
Sonidegib (INN), sold under the brand name Odomzo, is a medication used to treat cancer.
Binimetinib, sold under the brand name Mektovi, is an anti-cancer medication used to treat various cancers. Binimetinib is a selective inhibitor of MEK, a central kinase in the tumor-promoting MAPK pathway. Inappropriate activation of the pathway has been shown to occur in many cancers. In June 2018 it was approved by the FDA in combination with encorafenib for the treatment of patients with unresectable or metastatic BRAF V600E or V600K mutation-positive melanoma. In October 2023, it was approved by the FDA for treatment of NSCLC with a BRAF V600E mutation in combination with encorafenib. It was developed by Array Biopharma.
Osimertinib, sold under the brand name Tagrisso, is a medication used to treat non-small-cell lung carcinomas with specific mutations. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.
Entrectinib, sold under the brand name Rozlytrek, is an anti-cancer medication used to treat ROS1-positive non-small cell lung cancer and NTRK fusion-positive solid tumors. It is a selective tyrosine kinase inhibitor (TKI), of the tropomyosin receptor kinases (TRK) A, B and C, C-ros oncogene 1 (ROS1) and anaplastic lymphoma kinase (ALK).
Capmatinib, sold under the brand name Tabrecta, is an anticancer medication used for the treatment of metastatic non-small cell lung cancer whose tumors have a mutation that leads to the exon 14 skipping of the MET gene, which codes for the membrane receptor HGFR.
Hedgehog pathway inhibitors, also sometimes called hedgehog inhibitors, are small molecules that inhibit the activity of a component of the Hedgehog signaling pathway. Due to the role of aberrant Hedgehog signaling in tumor progression and cancer stem cell maintenance across cancer types, inhibition of the Hedgehog signaling pathway can be a useful strategy for restricting tumor growth and for preventing the recurrence of the disease post-surgery, post-radiotherapy, or post-chemotherapy. Thus, Hedgehog pathway inhibitors are an important class of anti-cancer drugs. At least three Hedgehog pathway inhibitors have been approved by the Food and Drug Administration (FDA) for cancer treatment. These include vismodegib and sonidegib, both inhibitors of Smoothened (SMO), which are being used for the treatment of basal cell carcinoma. Arsenic trioxide, an inhibitor of GLI transcription factors, is being used for the treatment of acute promyelocytic leukemia. In addition, multiple other Hedgehog pathway inhibitors are in different phases of clinical trials.
VEGFR-2 inhibitor, also known as kinase insert domain receptor(KDR) inhibitor, are tyrosine kinase receptor inhibitors that reduce angiogenesis or lymphangiogenesis, leading to anticancer activity. Generally they are small, synthesised molecules that bind competitively to the ATP-site of the tyrosine kinase domain. VEGFR-2 selective inhibitor can interrupt multiple signaling pathways involved in tumor, including proliferation, metastasis and angiogenesis.
Mobocertinib, sold under the brand name Exkivity, is used for the treatment of non-small cell lung cancer.
Ibrexafungerp, sold under the brand name Brexafemme, is an antifungal medication used to treat vulvovaginal candidiasis (VVC). It is taken orally. It is also currently undergoing clinical trials for other indications via an intravenous (IV) formulation. An estimated 75% of women will have at least one episode of VVC and 40 to 45% will have two or more episodes in their lifetime.