Clinical data | |
---|---|
Trade names | Mycostatin, others [1] |
AHFS/Drugs.com | Monograph |
MedlinePlus | a682758 |
License data | |
Routes of administration | Topical, vaginal, by mouth |
Drug class | Polyene antifungal medication [1] |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 0% on oral ingestion |
Metabolism | None (not extensively absorbed) |
Elimination half-life | Dependent upon GI transit time |
Excretion | Fecal (100%) |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
NIAID ChemDB | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.014.317 |
Chemical and physical data | |
Formula | C47H75NO17 |
Molar mass | 926.107 g·mol−1 |
3D model (JSmol) | |
Melting point | 44–46 °C (111–115 °F) |
| |
| |
(what is this?) (verify) |
Nystatin, sold under the brand name Mycostatin among others, is an antifungal medication. [1] It is used to treat Candida infections of the skin including diaper rash, thrush, esophageal candidiasis, and vaginal yeast infections. [1] It may also be used to prevent candidiasis in those who are at high risk. [1] Nystatin may be used by mouth, in the vagina, or applied to the skin. [1]
Common side effects when applied to the skin include burning, itching, and a rash. [1] Common side effects when taken by mouth include vomiting and diarrhea. [1] During pregnancy use in the vagina is safe while other formulations have not been studied in this group. [1] It works by disrupting the cell membrane of the fungal cells. [1]
Nystatin was discovered in 1950 by Rachel Fuller Brown and Elizabeth Lee Hazen. [2] It was the first polyene macrolide antifungal. [3] It is on the World Health Organization's List of Essential Medicines. [4] It is available as a generic medication. [1] It is made from the bacterium Streptomyces noursei . [2] In 2022, it was the 236th most commonly prescribed medication in the United States, with more than 1 million prescriptions. [5] [6]
Skin, vaginal, mouth, and esophageal Candida infections usually respond well to treatment with nystatin. Infections of nails or hyperkeratinized skin do not respond well. [7]
When given parenterally, its activity is reduced due to presence of plasma. [8]
Oral nystatin is often used as a preventive treatment in people who are at risk for fungal infections, such as AIDS patients with a low CD4+ count and people receiving chemotherapy. It has been investigated for use in patients after liver transplantation, but fluconazole was found to be much more effective for preventing colonization, invasive infection, and death. [9] It is effective in treating oral candidiasis in elderly people who wear dentures. [10]
It is also used in very low birth-weight (less than 1500 g or 3 lb 5oz o) infants to prevent invasive fungal infections, although fluconazole is the preferred treatment. It has been found to reduce the rate of invasive fungal infections and also reduce deaths when used in these babies. [11]
Liposomal nystatin is not commercially available, but investigational use has shown greater in vitro activity than colloidal formulations of amphotericin B, and demonstrated effectiveness against some amphotericin B-resistant forms of fungi. [12] It offers an intriguing possibility for difficult-to-treat systemic infections, such as invasive aspergillosis, or infections that demonstrate resistance to amphotericin B. Cryptococcus is also sensitive to nystatin. Additionally, liposomal nystatin appears to cause fewer cases of and less severe nephrotoxicity than observed with amphotericin B. [12]
Bitter taste and nausea are more common than most other adverse effects. [7]
The oral suspension form produces a number of adverse effects including but not limited to: [13]
Both the oral suspension and the topical form can cause:
Too high of a dosage can potentially lead to additional side effects such as: [16]
Like amphotericin B and natamycin, nystatin is an ionophore. [17] It binds to ergosterol, a major component of the fungal cell membrane. When present in sufficient concentrations, it forms pores in the membrane that lead to K+ leakage, acidification, and death of the fungus. [18] Ergosterol is a sterol unique to fungi, so the drug does not have such catastrophic effects on animals or plants. However, many of the systemic/toxic effects of nystatin in humans are attributable to its binding to mammalian sterols, namely cholesterol. This is the effect that accounts for the nephrotoxicity observed when high serum levels of nystatin are achieved. [16] Despite the molecular similarities and differences of ergosterol and cholesterol, there is currently no consensus as to why nystatin has a higher binding affinity for ergosterol because it remains unclear how the nystatin pores are formed. [16] Researchers have concluded thus far that nystatin pores are formed from 4-12 nystatin molecules, with an unknown number of the necessary sterol interactions. [19]
Nystatin also impacts cell membrane potential and transport by lipid peroxidation. [20] Conjugated double bonds in nystatin's structure steal electron density from ergosterol in fungal cell membranes. Lipid peroxidation alters the hydrophilicity of the interior of channels in the membrane, which is necessary to transport ions and polar molecules. Disruption of membrane transport from nystatin results in rapid cell death. Lipid peroxidation by nystatin also contributes significantly to K+ leakage due to structural modifications of the membrane. [21]
Nystatin A1 (often called nystatin) is biosynthesized by a bacterial strain, Streptomyces noursei . [22] The structure of this active compound is characterized as a polyene macrolide with a deoxysugar D-mycosamine, an aminoglycoside. [22] The genomic sequence of nystatin reveals the presence of the polyketide loading module (nysA), six polyketide syntheses modules (nysB, nysC, nysI, nysJ, and nysK) and two thioesterase modules (nysK and nysE). [22] It is evident that the biosynthesis of the macrolide functionality follows the polyketide synthase I pathway. [23]
Following the biosynthesis of the macrolide, the compound undergoes post-synthetic modifications, which are aided by the following enzymes: GDP-mannose dehydratase (nysIII), P450 monooxygenase (nysL and nysN), aminotransferase (nysDII), and glycosyltransferase (nysDI). [22] The biosynthetic pathway is thought to proceed as shown to yield nystatin.
The melting point of nystatin is 44 - 46 °C. [24]
Like many other antifungals and antibiotics, nystatin has bacterial origin. It was isolated from Streptomyces noursei in 1950 by Elizabeth Lee Hazen and Rachel Fuller Brown, who were doing research for the Division of Laboratories and Research of the New York State Department of Health. Hazen found a promising micro-organism in the soil of a friend's dairy farm. She named it Streptomyces noursei, after Jessie Nourse, the wife of the farm's owner. [25] Hazen and Brown named nystatin after the New York State Health Department in 1954. [26] The two discoverers patented the drug, and then donated the $13 million in profits to a foundation to fund similar research. [27]
It is also used in cellular biology as an inhibitor of the lipid raft-caveolae endocytosis pathway on mammalian cells, at concentrations around 3 μg/ml.[ citation needed ]
In certain cases, a nystatin derivative has been used to prevent the spread of mold on objects such as works of art. For example, it was applied to wood panel paintings damaged as a result of the Arno River Flood of 1966 in Florence, Italy. [28]
Nystatin is also used as a tool by scientists performing "perforated" patch-clamp electrophysiological recordings of cells. When loaded in the recording pipette, it allows for measurement of electrical currents without washing out the intracellular contents, because it forms pores in the cell membrane that are permeable to only monovalent ions, [29] preferably cations such as sodium, potassium, lithium, and cesium. [30]
Another electrophysiological measurement that can be made is fusion event duration in a nystatin-ergosterol based system. Fusions are measured while the voltage is held constant, and is characterized by a spike in the current that then returns to the baseline current as the nystatin channels close. When present in smaller concentrations, nystatin momentarily forms pores that allows a vesicle fusion to occur more easily; that fusion then interrupts the pore stability and the nystatin and ergosterol disperse from each other. [31] Conversely, researchers have found that the half-life of these nystatin pores increase with an increased dosage level of nystatin to the membrane systems. This indicates a lower energy of both the lipid membrane and the ionophores when there is a higher concentration of nystatin. [32]
Due to its toxicity profile when high levels in the serum are obtained, no injectable formulations of nystatin are on the US market. However, injectable formulations have been investigated in the past. [12]
Candidiasis is a fungal infection due to any species of the genus Candida. When it affects the mouth, in some countries it is commonly called thrush. Signs and symptoms include white patches on the tongue or other areas of the mouth and throat. Other symptoms may include soreness and problems swallowing. When it affects the vagina, it may be referred to as a yeast infection or thrush. Signs and symptoms include genital itching, burning, and sometimes a white "cottage cheese-like" discharge from the vagina. Yeast infections of the penis are less common and typically present with an itchy rash. Very rarely, yeast infections may become invasive, spreading to other parts of the body. This may result in fevers, among other symptoms.
An antifungal medication, also known as an antimycotic medication, is a pharmaceutical fungicide or fungistatic used to treat and prevent mycosis such as athlete's foot, ringworm, candidiasis (thrush), serious systemic infections such as cryptococcal meningitis, and others. Such drugs are usually obtained by a doctor's prescription, but a few are available over the counter (OTC). The evolution of antifungal resistance is a growing threat to health globally.
Amphotericin B is an antifungal medication used for serious fungal infections and leishmaniasis. The fungal infections it is used to treat include mucormycosis, aspergillosis, blastomycosis, candidiasis, coccidioidomycosis, and cryptococcosis. For certain infections it is given with flucytosine. It is typically given intravenously.
Ergosterol (ergosta-5,7,22-trien-3β-ol) is a mycosterol found in cell membranes of fungi and protozoa, serving many of the same functions that cholesterol serves in animal cells. Because many fungi and protozoa cannot survive without ergosterol, the enzymes that synthesize it have become important targets for drug discovery. In human nutrition, ergosterol is a provitamin form of vitamin D2; exposure to ultraviolet (UV) light causes a chemical reaction that produces vitamin D2.
Miconazole, sold under the brand name Monistat among others, is an antifungal medication used to treat ring worm, pityriasis versicolor, and yeast infections of the skin or vagina. It is used for ring worm of the body, groin, and feet. It is applied to the skin or vagina as a cream or ointment.
Natamycin, also known as pimaricin, is an antifungal medication used to treat fungal infections around the eye. This includes infections of the eyelids, conjunctiva, and cornea. It is used as eyedrops. Natamycin is also used in the food industry as a preservative.
Terbinafine is an antifungal medication used to treat pityriasis versicolor, fungal nail infections, and ringworm including jock itch and athlete's foot. It is either taken by mouth or applied to the skin as a cream or ointment. The cream and ointment should not be used for fungal nail infections.
Terconazole is an antifungal drug used to treat vaginal yeast infection. It comes as a lotion or a suppository and disrupts the biosynthesis of fats in a yeast cell. It has a relatively broad spectrum compared to azole compounds but not triazole compounds. Testing shows that it is a suitable compound for prophylaxis for those that suffer from chronic vulvovaginal candidiasis.
Polyene antimycotics, sometimes referred to as polyene antibiotics, are a class of antimicrobial polyene compounds that target fungi. These polyene antimycotics are typically obtained from certain species of Streptomyces bacteria. Previously, polyenes were thought to bind to ergosterol in the fungal cell membrane, weakening it and causing leakage of K+ and Na+ ions, which could contribute to fungal cell death. However, more detailed studies of polyene molecular properties have challenged this model suggesting that polyenes instead bind and extract ergosterol directly from the cellular membrane thus disrupting the many cellular functions ergosterols perform. Amphotericin B, nystatin, and natamycin are examples of polyene antimycotics. They are a subgroup of macrolides.
Filipin is a mixture of chemical compounds first isolated by chemists at the Upjohn company in 1955 from the mycelium and culture filtrates of a previously unknown actinomycete, Streptomyces filipinensis. It was discovered in a soil sample collected in the Philippine Islands, hence the name filipin. The isolate possessed potent antifungal activity. It was identified as a polyene macrolide based on its characteristic UV-Vis and IR spectra.
Nakaseomyces glabratus is a species of haploid yeast of the genus Nakaseomyces, previously known as Candida glabrata. Despite the fact that no sexual life cycle has been documented for this species, N. glabratus strains of both mating types are commonly found. N. glabrata is generally a commensal of human mucosal tissues, but in today's era of wider human immunodeficiency from various causes, N. glabratus is often the second or third most common cause of candidiasis as an opportunistic pathogen. Infections caused by N. glabratus can affect the urogenital tract or even cause systemic infections by entrance of the fungal cells in the bloodstream (Candidemia), especially prevalent in immunocompromised patients.
Sertaconazole, sold under the brand name Ertaczo among others, is an antifungal medication of the Benzothiophene class. It is available as a cream to treat skin infections such as athlete's foot.
Butenafine, sold under the brand names Lotrimin Ultra, Mentax, and Butop, is a synthetic benzylamine derived antifungal drug.
Hamycin is a pair polyene antimycotic organic compounds described in India. It is a heptaene antifungal compound rather similar in chemical structure to amphotericin B except that it has an additional aromatic group bonded to the molecule. When pure, hamycin is a yellow, powdered solid. There are two versions of hamycin with very similar chemical structures: hamycin A and hamycin B.
Clotrimazole, sold under the brand name Lotrimin, among others, is an antifungal medication. It is used to treat vaginal yeast infections, oral thrush, diaper rash, tinea versicolor, and types of ringworm including athlete's foot and jock itch. It can be taken by mouth or applied as a cream to the skin or in the vagina.
Vaginal yeast infection, also known as candidal vulvovaginitis and vaginal thrush, is excessive growth of yeast in the vagina that results in irritation. The most common symptom is vaginal itching, which may be severe. Other symptoms include burning with urination, a thick, white vaginal discharge that typically does not smell bad, pain during sex, and redness around the vagina. Symptoms often worsen just before a woman's period.
Candida tropicalis is a species of yeast in the genus Candida. It is a common pathogen in neutropenic hosts, in whom it may spread through the bloodstream to peripheral organs. For invasive disease, treatments include amphotericin B, echinocandins, or extended-spectrum triazole antifungals.
Ibrexafungerp, sold under the brand name Brexafemme, is an antifungal medication used to treat vulvovaginal candidiasis (VVC). It is taken orally. It is also currently undergoing clinical trials for other indications via an intravenous (IV) formulation. An estimated 75% of women will have at least one episode of VVC and 40 to 45% will have two or more episodes in their lifetime.
Topical antifungaldrugs are used to treat fungal infections on the skin, scalp, nails, vagina or inside the mouth. These medications come as creams, gels, lotions, ointments, powders, shampoos, tinctures and sprays. Most antifungal drugs induce fungal cell death by destroying the cell wall of the fungus. These drugs inhibit the production of ergosterol, which is a fundamental component of the fungal cell membrane and wall.
Oteseconazole, a novel tetrazole containing orally bioavailable and selective inhibitor of fungal lanosterol 14α-demethylase (CYP51), has shown promising efficacy in the treatment of recurrent vulvovaginal candidiasis (RVVC).