Clinical data | |
---|---|
Trade names | Chloromycetin, Abeed, others [1] |
Other names | C/CHL/CL [2] |
AHFS/Drugs.com | Monograph |
MedlinePlus | a608008 |
License data | |
Pregnancy category |
|
Routes of administration | Topical (eye drops), by mouth, intravenous, intramuscular |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 75–90% |
Protein binding | 60% |
Metabolism | Liver |
Elimination half-life | 1.6–3.3 hours |
Excretion | Kidney (5–15%), faeces (4%) |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
PDB ligand | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.000.262 |
Chemical and physical data | |
Formula | C11H12Cl2N2O5 |
Molar mass | 323.13 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Chloramphenicol is an antibiotic useful for the treatment of a number of bacterial infections. [5] This includes use as an eye ointment to treat conjunctivitis. [6] By mouth or by injection into a vein, it is used to treat meningitis, plague, cholera, and typhoid fever. [5] Its use by mouth or by injection is only recommended when safer antibiotics cannot be used. [5] Monitoring both blood levels of the medication and blood cell levels every two days is recommended during treatment. [5]
Common side effects include bone marrow suppression, nausea, and diarrhea. [5] The bone marrow suppression may result in death. [5] To reduce the risk of side effects treatment duration should be as short as possible. [5] People with liver or kidney problems may need lower doses. [5] In young infants, a condition known as gray baby syndrome may occur which results in a swollen stomach and low blood pressure. [5] Its use near the end of pregnancy and during breastfeeding is typically not recommended. [7] Chloramphenicol is a broad-spectrum antibiotic that typically stops bacterial growth by stopping the production of proteins. [5]
Chloramphenicol was discovered after being isolated from Streptomyces venezuelae in 1947. [8] Its chemical structure was identified and it was first synthesized in 1949. It is on the World Health Organization's List of Essential Medicines. [9] It is available as a generic medication. [5]
The original indication of chloramphenicol was in the treatment of typhoid, but the presence of multiple drug-resistant Salmonella typhi has meant it is seldom used for this indication except when the organism is known to be sensitive.[ medical citation needed ]
In low-income countries, the WHO no longer recommends only chloramphenicol as first-line to treat meningitis, but recognises it may be used with caution if there are no available alternatives. [10]
During the last decade chloramphenicol has been re-evaluated as an old agent with potential against systemic infections due to multidrug-resistant gram positive microorganisms (including vancomycin resistant enterococci). In vitro data have shown an activity against the majority (> 80%) of vancomycin resistant E. faecium strains. [11]
In the context of preventing endophthalmitis, a complication of cataract surgery, a 2017 systematic review found moderate evidence that using chloramphenicol eye drops in addition to an antibiotic injection (cefuroxime or penicillin) will likely lower the risk of endophthalmitis, compared to eye drops or antibiotic injections alone. [12]
Chloramphenicol has a broad spectrum of activity and has been effective in treating ocular infections such as conjunctivitis, blepharitis etc. caused by a number of bacteria including Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli. It is not effective against Pseudomonas aeruginosa. The following susceptibility data represent the minimum inhibitory concentration for a few medically significant organisms. [13]
Each of these concentrations is dependent upon the bacterial strain being targeted. Some strains of E coli, for example, show spontaneous emergence of chloramphenicol resistance. [14] [15]
Three mechanisms of resistance to chloramphenicol are known: reduced membrane permeability, mutation of the 50S ribosomal subunit, and elaboration of chloramphenicol acetyltransferase. It is easy to select for reduced membrane permeability to chloramphenicol in vitro by serial passage of bacteria, and this is the most common mechanism of low-level chloramphenicol resistance. High-level resistance is conferred by the cat-gene; [16] this gene codes for an enzyme called chloramphenicol acetyltransferase, which inactivates chloramphenicol by covalently linking one or two acetyl groups, derived from acetyl-S-coenzyme A, to the hydroxyl groups on the chloramphenicol molecule. The acetylation prevents chloramphenicol from binding to the ribosome. Resistance-conferring mutations of the 50S ribosomal subunit are rare.[ medical citation needed ]
Chloramphenicol resistance may be carried on a plasmid that also codes for resistance to other drugs. One example is the ACCoT plasmid (A=ampicillin, C=chloramphenicol, Co=co-trimoxazole, T=tetracycline), which mediates multiple drug resistance in typhoid (also called R factors).[ medical citation needed ]
As of 2014 some Enterococcus faecium and Pseudomonas aeruginosa strains are resistant to chloramphenicol. Some Veillonella spp. and Staphylococcus capitis strains have also developed resistance to chloramphenicol to varying degrees. [17]
Some other resistance genes beyond cat are known, such as chloramphenicol hydrolase, [18] and chloramphenicol phosphotransferase. [19]
The most serious side effect of chloramphenicol treatment is aplastic anaemia ('AA'). This effect is rare but sometimes fatal. The risk of AA is high enough that alternatives should be strongly considered. Treatments are available but expensive. No way exists to predict who may or may not suffer this side effect. The effect usually occurs weeks or months after treatment has been stopped, and a genetic predisposition may be involved. It is not known whether monitoring the blood counts of patients can prevent the development of aplastic anaemia, but patients are recommended to have a baseline blood count with a repeat blood count every few days while on treatment. [20] Chloramphenicol should be discontinued if the complete blood count drops. The highest risk is with oral chloramphenicol (affecting 1 in 24,000–40,000) [21] and the lowest risk occurs with eye drops (affecting less than one in 224,716 prescriptions). [22]
Chloramphenicol may cause bone marrow suppression during treatment; this is a direct toxic effect of the drug on human mitochondria. [23] This effect manifests first as a fall in hemoglobin levels, which occurs quite predictably once a cumulative dose of 20 g has been given. The anaemia is fully reversible once the drug is stopped and does not predict future development of aplastic anaemia. Studies in mice have suggested existing marrow damage may compound any marrow damage resulting from the toxic effects of chloramphenicol. [24]
Leukemia, a cancer of the blood or bone marrow, is characterized by an abnormal increase of immature white blood cells. The risk of childhood leukemia is increased, as demonstrated in a Chinese case–control study, [25] and the risk increases with length of treatment.
Intravenous chloramphenicol use has been associated with the so-called gray baby syndrome. [26] This phenomenon occurs in newborn infants because they do not yet have fully functional liver enzymes (i.e. UDP-glucuronyl transferase), so chloramphenicol remains unmetabolized in the body. [27] This causes several adverse effects, including hypotension and cyanosis. The condition can be prevented by using the drug at the recommended doses, and monitoring blood levels. [28] [29] [30]
Fever, macular and vesicular rashes, angioedema, urticaria, and anaphylaxis may occur. Herxheimer's reactions have occurred during therapy for typhoid fever. [31]
Headache, mild depression, mental confusion, and delirium have been described in patients receiving chloramphenicol. Optic and peripheral neuritis have been reported, usually following long-term therapy. If this occurs, the drug should be promptly withdrawn. [31] It is theorized that this is caused by chloramphenicol's effects on the metabolism of B-Vitamins, specifically B-12. [32]
Chloramphenicol is extremely lipid-soluble; it remains relatively unbound to protein and is a small molecule. It has a large apparent volume of distribution and penetrates effectively into all tissues of the body, including the brain. Distribution is not uniform, with highest concentrations found in the liver and kidney, with lowest in the brain and cerebrospinal fluid. [31] The concentration achieved in brain and cerebrospinal fluid is around 30 to 50% of the overall average body concentration, even when the meninges are not inflamed; this increases to as high as 89% when the meninges are inflamed.[ citation needed ]
Chloramphenicol increases the absorption of iron. [33]
Chloramphenicol is metabolized by the liver to chloramphenicol glucuronate (which is inactive). In liver impairment, the dose of chloramphenicol must therefore be reduced. No standard dose reduction exists for chloramphenicol in liver impairment, and the dose should be adjusted according to measured plasma concentrations.
The majority of the chloramphenicol dose is excreted by the kidneys as the inactive metabolite, chloramphenicol glucuronate. Only a tiny fraction of the chloramphenicol is excreted by the kidneys unchanged. Plasma levels should be monitored in patients with renal impairment, but this is not mandatory. Chloramphenicol succinate ester (an intravenous prodrug form) is readily excreted unchanged by the kidneys, more so than chloramphenicol base, and this is the major reason why levels of chloramphenicol in the blood are much lower when given intravenously than orally. [34]
Plasma levels of chloramphenicol must be monitored in neonates and patients with abnormal liver function. Plasma levels should be monitored in all children under the age of four, the elderly, and patients with kidney failure. Because efficacy and toxicity of chloramphenicol are associated with a maximum serum concentration, peak levels (one hour after the intravenous dose is given) should be 10–20 μg/mL with toxicity > 40 μg/mL; trough levels (taken immediately before a dose) should be 5–10 μg/mL. [35] [36]
Administration of chloramphenicol concomitantly with bone marrow depressant drugs is contraindicated, although concerns over aplastic anaemia associated with ocular chloramphenicol have largely been discounted. [37]
Chloramphenicol is a potent inhibitor of the cytochrome P450 isoforms CYP2C19 and CYP3A4 in the liver. [38] Inhibition of CYP2C19 causes decreased metabolism and therefore increased levels of, for example, antidepressants, antiepileptics, proton-pump inhibitors, and anticoagulants if they are given concomitantly. Inhibition of CYP3A4 causes increased levels of, for example, calcium channel blockers, immunosuppressants, chemotherapeutic drugs, benzodiazepines, azole antifungals, tricyclic antidepressants, macrolide antibiotics, SSRIs, statins, cardiac antiarrhythmics, antivirals, anticoagulants, and PDE5 inhibitors. [31] [39]
Chloramphenicol is antagonistic with most cephalosporins and using both together should be avoided in the treatment of infections. [40]
Chloramphenicol has been demonstrated a synergistic effect when combined with fosfomycin against clinical isolates of Enterococcus faecium . [41]
Chloramphenicol is a bacteriostatic agent, inhibiting protein synthesis. It prevents protein chain elongation by inhibiting the peptidyl transferase activity of the bacterial ribosome. It specifically binds to A2451 and A2452 residues [42] in the 23S rRNA of the 50S ribosomal subunit, preventing peptide bond formation. [43] Chloramphenicol directly interferes with substrate binding in the ribosome, as compared to macrolides, which sterically block the progression of the growing peptide. [44] [45] [46]
Chloramphenicol was first isolated from Streptomyces venezuelae in 1947 and in 1949 a team of scientists at Parke-Davis including Mildred Rebstock published their identification of the chemical structure and their synthesis. [8] : 26 [47] [48]
In 1972, Senator Ted Kennedy combined the two examples of the Tuskegee Syphilis Study and the 1958 Los Angeles Infant Chloramphenicol experiments as initial subjects of a Senate Subcommittee investigation into dangerous medical experimentation on human subjects. [49]
In 2007, the accumulation of reports associating aplastic anemia and blood dyscrasia with chloramphenicol eye drops led to the classification of "probable human carcinogen" according to World Health Organization criteria, based on the known published case reports and the spontaneous reports submitted to the National Registry of Drug-Induced Ocular Side Effects. [50]
Chloramphenicol is available as a generic worldwide under many brandnames [51] and also under various generic names in eastern Europe and Russia, including chlornitromycin, levomycetin, and chloromycetin; the racemate is known as synthomycetin. [52]
Chloramphenicol is available as a capsule or as a liquid. In some countries, it is sold as chloramphenicol palmitate ester (CPE). CPE is inactive, and is hydrolysed to active chloramphenicol in the small intestine. No difference in bioavailability is noted between chloramphenicol and CPE.[ citation needed ]
Manufacture of oral chloramphenicol in the U.S. stopped in 1991, because the vast majority of chloramphenicol-associated cases of aplastic anaemia are associated with the oral preparation. No oral formulation of chloramphenicol is available in the U.S. for human use. [53]
The intravenous (IV) preparation of chloramphenicol is the succinate ester. This creates a problem: Chloramphenicol succinate ester is an inactive prodrug and must first be hydrolysed to chloramphenicol; however, the hydrolysis process is often incomplete, and 30% of the dose is lost and removed in the urine. Serum concentrations of IV chloramphenicol are only 70% of those achieved when chloramphenicol is given orally. [54] For this reason, the dose needs to be increased to 75 mg/kg/day when administered IV to achieve levels equivalent to the oral dose. [55]
Oily chloramphenicol (or chloramphenicol oil suspension) is a long-acting preparation of chloramphenicol first introduced by Roussel in 1954; marketed as Tifomycine, it was originally used as a treatment for typhoid. Roussel stopped production of oily chloramphenicol in 1995; the International Dispensary Association Foundation has manufactured it since 1998, first in Malta and then in India from December 2004. [56]
Oily chloramphenicol was first used to treat meningitis in 1975 [57] and numerous studies since have demonstrated its efficacy. [58] [59] [60] It is the cheapest treatment available for meningitis (US$5 per treatment course, compared to US$30 for ampicillin and US$15 for five days of ceftriaxone). It has the great advantage of requiring only a single injection, whereas ceftriaxone is traditionally given daily for five days. This recommendation may yet change, now that a single dose of ceftriaxone (cost US$3) has been shown to be equivalent to one dose of oily chloramphenicol. [61]
Chloramphenicol is used in topical preparations (ointments and eye drops) for the treatment of bacterial conjunctivitis. Isolated case reports of aplastic anaemia following use of chloramphenicol eyedrops exist, but the risk is estimated to be of the order of less than one in 224,716 prescriptions. [22] In Mexico, this is the treatment used prophylactically in newborns for neonatal conjunctivitis. [62]
Although its use in veterinary medicine is highly restricted, chloramphenicol still has some important veterinary uses. [63] It is currently considered the most useful treatment of chlamydial disease in koalas. [64] [65] The pharmacokinetics of chloramphenicol have been investigated in koalas. [66]
The biosynthetic gene cluster and pathway for chloroamphenicol was characterized from Streptomyces venezuelae ISP5230 [67] [68] a.k.a. ATCC 17102. [69] Currently the chloramphenicol biosynthetic gene cluster has 17 genes with assigned roles. [70]
Aplastic anemia (AA) is a severe hematologic condition in which the body fails to make blood cells in sufficient numbers. Blood cells are produced in the bone marrow by stem cells that reside there. Aplastic anemia causes a deficiency of all blood cell types: red blood cells, white blood cells, and platelets.
Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid is active against most Gram-positive bacteria that cause disease, including streptococci, vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). The main uses are infections of the skin and pneumonia although it may be used for a variety of other infections including drug-resistant tuberculosis. It is used either by injection into a vein or by mouth.
Nitrofurantoin, sold under the brand name Macrobid among others, is an antibacterial medication of the nitrofuran class used to treat urinary tract infections (UTIs), although it is not as effective for kidney infections. It is taken by mouth.
Colistin, also known as polymyxin E, is an antibiotic medication used as a last-resort treatment for multidrug-resistant Gram-negative infections including pneumonia. These may involve bacteria such as Pseudomonas aeruginosa, Klebsiella pneumoniae, or Acinetobacter. It comes in two forms: colistimethate sodium can be injected into a vein, injected into a muscle, or inhaled, and colistin sulfate is mainly applied to the skin or taken by mouth. Colistimethate sodium is a prodrug; it is produced by the reaction of colistin with formaldehyde and sodium bisulfite, which leads to the addition of a sulfomethyl group to the primary amines of colistin. Colistimethate sodium is less toxic than colistin when administered parenterally. In aqueous solutions, it undergoes hydrolysis to form a complex mixture of partially sulfomethylated derivatives, as well as colistin. Resistance to colistin began to appear as of 2015.
Rifampicin, also known as rifampin, is an ansamycin antibiotic used to treat several types of bacterial infections, including tuberculosis (TB), Mycobacterium avium complex, leprosy, and Legionnaires' disease. It is almost always used together with other antibiotics with two notable exceptions: when given as a "preferred treatment that is strongly recommended" for latent TB infection; and when used as post-exposure prophylaxis to prevent Haemophilus influenzae type b and meningococcal disease in people who have been exposed to those bacteria. Before treating a person for a long period of time, measurements of liver enzymes and blood counts are recommended. Rifampicin may be given either by mouth or intravenously.
Ceftriaxone, sold under the brand name Rocephin, is a third-generation cephalosporin antibiotic used for the treatment of a number of bacterial infections. These include middle ear infections, endocarditis, meningitis, pneumonia, bone and joint infections, intra-abdominal infections, skin infections, urinary tract infections, gonorrhea, and pelvic inflammatory disease. It is also sometimes used before surgery and following a bite wound to try to prevent infection. Ceftriaxone can be given by injection into a vein or into a muscle.
Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins.
Pancytopenia is a medical condition in which there is significant reduction in the number of almost all blood cells.
Ceftazidime, sold under the brand name Fortaz among others, is a third-generation cephalosporin antibiotic useful for the treatment of a number of bacterial infections. Specifically it is used for joint infections, meningitis, pneumonia, sepsis, urinary tract infections, malignant otitis externa, Pseudomonas aeruginosa infection, and vibrio infection. It is given by injection into a vein, muscle, or eye.
Cefaclor, sold under the trade name Ceclor among others, is a second-generation cephalosporin antibiotic used to treat certain bacterial infections such as pneumonia and infections of the ear, lung, skin, throat, and urinary tract. It is also available from other manufacturers as a generic.
Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamycin is recommended for short-term use only, usually from 7 to 10 days. Since antibiotics only show activity against bacteria, it is ineffective in viral infections.
Tigecycline, sold under the brand name Tygacil, is a tetracycline antibiotic medication for a number of bacterial infections. It is a glycylcycline class drug that is administered intravenously. It was developed in response to the growing rate of antibiotic resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and E. coli. As a tetracycline derivative antibiotic, its structural modifications has expanded its therapeutic activity to include Gram-positive and Gram-negative organisms, including those of multi-drug resistance.
Tobramycin is an aminoglycoside antibiotic derived from Streptomyces tenebrarius that is used to treat various types of bacterial infections, particularly Gram-negative infections. It is especially effective against species of Pseudomonas.
Cefotaxime is an antibiotic used to treat several bacterial infections in humans, other animals, and plant tissue culture. Specifically in humans it is used to treat joint infections, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, sepsis, gonorrhea, and cellulitis. It is given either by injection into a vein or muscle.
Amikacin is an antibiotic medication used for a number of bacterial infections. This includes joint infections, intra-abdominal infections, meningitis, pneumonia, sepsis, and urinary tract infections. It is also used for the treatment of multidrug-resistant tuberculosis. It is used by injection into a vein using an IV or into a muscle.
Flucytosine, also known as 5-fluorocytosine (5-FC), is an antifungal medication. It is specifically used, together with amphotericin B, for serious Candida infections and cryptococcosis. It may be used by itself or with other antifungals for chromomycosis. Flucytosine is used by mouth and by injection into a vein.
A drug of last resort (DoLR), also known as a heroic dose, is a pharmaceutical drug which is tried after all other drug options have failed to produce an adequate response in the patient. Drug resistance, such as antimicrobial resistance or antineoplastic resistance, may make the first-line drug ineffective, especially in case of multidrug-resistant pathogens and tumors. Such an alternative may be outside of extant regulatory requirements or medical best practices, in which case it may be viewed as salvage therapy.
Gray baby syndrome is a rare but serious, even fatal, side effect that occurs in newborn infants following the accumulation of the antibiotic chloramphenicol. Chloramphenicol is a broad-spectrum antibiotic that has been used to treat a variety of bacteria infections like Streptococcus pneumoniae as well as typhoid fever, meningococcal sepsis, cholera, and eye infections. Chloramphenicol works by binding to ribosomal subunits which blocks transfer ribonucleic acid (RNA) and prevents the synthesis of bacterial proteins. Chloramphenicol has also been used to treat neonates born before 37 weeks of the gestational period for prophylactic purposes. In 1958, newborns born prematurely due to rupture of the amniotic sac were given chloramphenicol to prevent possible infections, and it was noticed that these newborns had a higher mortality rate compared with those who were not treated with the antibiotic. Over the years, chloramphenicol has been used less in clinical practice due to the risks of toxicity not only to neonates, but also to adults due to the risk of aplastic anemia. Chloramphenicol is now reserved to treat certain severe bacteria infections that were not successfully treated with other antibiotic medications.
Fosfomycin, sold under the brand name Monurol among others, is an antibiotic primarily used to treat lower urinary tract infections. It is not indicated for kidney infections. Occasionally it is used for prostate infections. It is generally taken by mouth.
Meningitis is acute or chronic inflammation of the protective membranes covering the brain and spinal cord, collectively called the meninges. The most common symptoms are fever, intense headache, vomiting and neck stiffness and occasionally photophobia. Other symptoms include confusion or altered consciousness, nausea, and an inability to tolerate light or loud noises. Young children often exhibit only nonspecific symptoms, such as irritability, drowsiness, or poor feeding. A non-blanching rash may also be present.
According to current health policy in Mexico, preventive treatment for ophthalmia neonatorum in neonates is a medico-legal requirement and consists of the application of a single drop of ophthalmic chloramphenicol in both eyes shortly after birth