Boromycin

Last updated
Boromycin
Boromycin.png
Clinical data
ATC code
  • none
Identifiers
  • [1-{(1R)-1-[(1R,2R,5S,6R,8R,12R,14S,17R,18R,22S,24Z,28S,30S,33R)-12,28-Dihydroxy-1,2,18,19-tetra(hydroxy-κO)-6,13,13,17,29,29,33-heptamethyl-3,20-dioxo-4,7,21,34,35-pentaoxatetracyclo[28.3.1.15,8.114,18]hexatriacont-24-en-22-yl]ethoxy}-3-methyl-1-oxo-2-butanaminiumato(4-)]boron
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
CompTox Dashboard (EPA)
Chemical and physical data
Formula C45H74BNO15
Molar mass 879.89 g·mol−1
3D model (JSmol)
  • CC(C)C([NH3+])C(=O)O[C@H](C)[C@H]7OC(=O)C4O[B-]25O[C@@H](C(=O)O[C@H]1C[C@H](O[C@@H]1C)CCC[C@@H](O)C(C)(C)[C@@H]3CC[C@@H](C)[C@@]4(O2)O3)[C@]6(O5)O[C@@H](CC[C@H]6C)C(C)(C)[C@@H](O)CC\C=C/C7
  • InChI=1S/C45H73BNO15/c1-24(2)36(47)39(50)54-27(5)30-16-12-11-13-17-32(48)42(7,8)34-21-19-26(4)45(57-34)38-41(52)56-31-23-29(53-28(31)6)15-14-18-33(49)43(9,10)35-22-20-25(3)44(58-35)37(40(51)55-30)59-46(60-38,61-44)62-45/h11-12,24-38,48-49H,13-23,47H2,1-10H3/q-1/p+1/b12-11-/t25-,26-,27-,28-,29-,30+,31+,32+,33-,34+,35+,36?,37?,38+,44+,45+,46?/m1/s1 Yes check.svgY
  • Key:OOBFYEMEQCZLJL-WIHWYPJVSA-O Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Boromycin is a bacteriocidal polyether-macrolide antibiotic. It was initially isolated from the Streptomyces antibioticus , and is notable for being the first natural product found to contain the element boron. It is effective against most Gram-positive bacteria, but is ineffective against Gram-negative bacteria. Boromycin kills bacteria by negatively affecting the cytoplasmic membrane, resulting in the loss of potassium ions from the cell. Boromycin has not been approved as a drug for medical use.

Contents

Discovery

Boromycin was discovered by the scholars of the Institute for Special Botany and Organic Chemical Laboratories at the Swiss Federal Institute of Technology, Zurich, Switzerland, who, in 1967, published a study [1] in as an article called "Metabolic products of microorganisms" in the Helvetica Chimica Acta journal. In this article, the authors described that a new strain of Streptomyces antibioticus produces a novel antibiotic which was the first boron-containing organic compound found in nature. The authors called this new compound boromycin and characterized it as a complex of boric acid with a tetradentate organic complexing agent that yields by hydrolysis D-valine, boric acid, and a polyhydroxy compound of macrolide type. [1]

General information

Boromycin has potential medical uses as an antibiotic for treating Gram-positive bacterial infections, coccidiosis, and certain protozoal infections, but its efficacy and safety in clinical settings were not determined. [2] Boromycin has not been approved as a drug for medical use in the USA (by the FDA), Europe, Canada, Japan, Russia, China, or the former Soviet Union.

Boromycin is a boron-containing compound produced by Streptomyces antibioticus, isolated from the soil of Ivory Coast. It exhibits antimicrobial properties, inhibiting the growth of Gram-positive bacteria while having no effect on certain Gram-negative bacteria and fungi. Boromycin has also shown activity against protozoa of the genera plasmodiae and babesiae. [2]

In addition to its antimicrobial effects, boromycin has been studied to treat and prevent coccidiosis in susceptible poultry. [3] It has been predicted to inhibit the replication of HIV-1 [4] and the synthesis of proteins, RNA, and DNA in whole cells of Bacillus subtilis. Boromycin binds to the cytoplasmic membrane within the cell and is antagonized by surface-active compounds. It is bound to lipoprotein and does not influence the K+, Na+-ATPase of the cytoplasmic membrane. [2]

The removal of boric acid from the boromycin molecule leads to a loss of antibiotic activity. There are minor products of boromycin fermentation, differing in the acylation position. Experiments with feeding the production strain Sorangium cellulosum with specific isotopes have shed light on the biosynthesis of tartrolons, which are closely related to boromycin and aplasmomycin. [2]

Research

Boron, the essential trace element found in boromycin, benefits plants, animals, and humans. Boron-containing compounds such as boromycin have gained attention for their potential medicinal applications. [2]

Researchers are exploring the incorporation of boron into biologically active molecules, including for boron neutron capture therapy of brain tumors. [5] The role of the boron atom in neutron capture therapy for malignant brain tumors is to target tumor cells selectively. When a non-radioactive boron isotope (10B) is administered and accumulates in tumor cells, these cells can be selectively destroyed when irradiated with low-energy thermal neutrons. The collision of neutrons with 10B releases high linear energy transfer particles, such as α-particles and lithium-7 nuclei, which can selectively destroy the tumor cells while sparing surrounding normal cells. [5]

Some boron-containing biomolecules may also act as signaling molecules interacting with cell surfaces. [2]

Anti-HIV activity

A 1996 study suggests that boromycin has anti-HIV activity in in vitro laboratory experiments. In that study, boromycin inhibited the replication of both clinically isolated HIV-1 strains and cultured strains. The mechanism of action was believed to involve blocking the later stage of HIV infection, specifically the maturity step for replication of the HIV molecule. [4]

While the study provides promising results in a controlled laboratory setting, it is important to note that in vitro experiments do not always accurately predict the effectiveness of a compound in living organisms. Strong evidence should be accumulated to determine boromycin's actual in vivo anti-HIV activity in a living human organism. Accumulating such evidence typically involves preclinical studies in animal models to assess safety, efficacy, and pharmacokinetics before progressing to clinical trials in humans. [6] [7]

The lack of replication of the 1996 study's [4] findings by other studies suggests a lack of confirmation regarding the anti-HIV activity of boromycin. This could be due to potential methodological limitations in the original study, such as variations in experimental conditions or difficulties in isolating and purifying boromycin. It is also possible that the initial study produced a false positive result, where the observed anti-HIV activity resulted from chance or experimental artifacts rather than a true effect. Additionally, publication bias may play a role, as positive or novel findings are more likely to be published, potentially leading to an incomplete picture of the overall research on boromycin's anti-HIV activity. Studies are needed to address these factors and determine the true effectiveness of boromycin as an in vivo anti-HIV agent. [8] [9] [10] [11]

Anti-plasmodium activity

In a 2021 study, [12] boromycin showed activity against Plasmodium falciparum and Plasmodium knowlesi, two species of malaria parasites. It demonstrated rapid killing of asexual stages of both species, including multidrug-resistant strains, at low concentrations. Additionally, boromycin exhibited activity against Plasmodium falciparum stage V gametocytes. However, other studies have not confirmed these results and should be interpreted cautiously. Additional scientific investigation and validation are required to establish the efficacy of boromycin as a potential antimalarial candidate. It is essential to conduct further studies to confirm and substantiate the findings, ensuring reliable and reproducible results. The potential of boromycin in the context of malaria treatment warrants continued research and rigorous examination to assess its effectiveness and potential implications for therapeutic applications fully. [13]

Activity against intracellular protozoal parasites

A 2021 study [3] by scholars from Central Luzon State University, Philippines, and Washington State University, USA, showed the activity of boromycin against Toxoplasma gondii and Cryptosporidium parvum, which are intracellular protozoal parasites affecting humans and animals. The study found that boromycin effectively inhibited the intracellular proliferation of both parasites at low concentrations. However, these preliminary results have not yet been confirmed by further studies. To validate the results and understand the potential of boromycin as a therapeutic option for the treatment of toxoplasmosis and cryptosporidiosis, it is critical to conduct studies to confirm the activity of boromycin against intracellular protozoan parasites in living host organisms. [3]

Related Research Articles

Antimalarial medications or simply antimalarials are a type of antiparasitic chemical agent, often naturally derived, that can be used to treat or to prevent malaria, in the latter case, most often aiming at two susceptible target groups, young children and pregnant women. As of 2018, modern treatments, including for severe malaria, continued to depend on therapies deriving historically from quinine and artesunate, both parenteral (injectable) drugs, expanding from there into the many classes of available modern drugs. Incidence and distribution of the disease is expected to remain high, globally, for many years to come; moreover, known antimalarial drugs have repeatedly been observed to elicit resistance in the malaria parasite—including for combination therapies featuring artemisinin, a drug of last resort, where resistance has now been observed in Southeast Asia. As such, the needs for new antimalarial agents and new strategies of treatment remain important priorities in tropical medicine. As well, despite very positive outcomes from many modern treatments, serious side effects can impact some individuals taking standard doses.

<span class="mw-page-title-main">Aminoglycoside</span> Antibacterial drug

Aminoglycoside is a medicinal and bacteriologic category of traditional Gram-negative antibacterial medications that inhibit protein synthesis and contain as a portion of the molecule an amino-modified glycoside (sugar). The term can also refer more generally to any organic molecule that contains amino sugar substructures. Aminoglycoside antibiotics display bactericidal activity against Gram-negative aerobes and some anaerobic bacilli where resistance has not yet arisen but generally not against Gram-positive and anaerobic Gram-negative bacteria.

<span class="mw-page-title-main">Clindamycin</span> Antibiotic

Clindamycin is a lincosamide antibiotic medication used for the treatment of a number of bacterial infections, including osteomyelitis (bone) or joint infections, pelvic inflammatory disease, strep throat, pneumonia, acute otitis media, and endocarditis. It can also be used to treat acne, and some cases of methicillin-resistant Staphylococcus aureus (MRSA). In combination with quinine, it can be used to treat malaria. It is available by mouth, by injection into a vein, and as a cream or a gel to be applied to the skin or in the vagina.

Protease inhibitors (PIs) are medications that act by interfering with enzymes that cleave proteins. Some of the most well known are antiviral drugs widely used to treat HIV/AIDS, hepatitis C and COVID-19. These protease inhibitors prevent viral replication by selectively binding to viral proteases and blocking proteolytic cleavage of protein precursors that are necessary for the production of infectious viral particles.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to at least one antimicrobial drug in three or more antimicrobial categories. Antimicrobial categories are classifications of antimicrobial agents based on their mode of action and specific to target organisms. The MDR types most threatening to public health are MDR bacteria that resist multiple antibiotics; other types include MDR viruses, parasites.

<span class="mw-page-title-main">Doxorubicin</span> Chemotherapy medication

Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used together with other chemotherapy agents. Doxorubicin is given by injection into a vein.

<span class="mw-page-title-main">Fosmidomycin</span> Chemical compound

Fosmidomycin is an antibiotic that was originally isolated from culture broths of bacteria of the genus Streptomyces. It specifically inhibits DXP reductoisomerase, a key enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. It is a structural analogue of 2-C-methyl-D-erythrose 4-phosphate. It inhibits the E. coli enzyme with a KI value of 38 nM (4), MTB at 80 nM, and the Francisella enzyme at 99 nM. Several mutations in the E. coli DXP reductoisomerase were found to confer resistance to fosmidomycin.

<span class="mw-page-title-main">Tigecycline</span> Chemical compound

Tigecycline, sold under the brand name Tygacil, is a tetracycline antibiotic medication for a number of bacterial infections. It is a glycylcycline administered intravenously. It was developed in response to the growing rate of antibiotic resistant bacteria such as Staphylococcus aureus, Acinetobacter baumannii, and E. coli. As a tetracycline derivative antibiotic, its structural modifications has expanded its therapeutic activity to include Gram-positive and Gram-negative organisms, including those of multi-drug resistance.

<i>Plasmodium knowlesi</i> Species of single-celled organism

Plasmodium knowlesi is a parasite that causes malaria in humans and other primates. It is found throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Like other Plasmodium species, P. knowlesi has a life cycle that requires infection of both a mosquito and a warm-blooded host. While the natural warm-blooded hosts of P. knowlesi are likely various Old World monkeys, humans can be infected by P. knowlesi if they are fed upon by infected mosquitoes. P. knowlesi is a eukaryote in the phylum Apicomplexa, genus Plasmodium, and subgenus Plasmodium. It is most closely related to the human parasite Plasmodium vivax as well as other Plasmodium species that infect non-human primates.

<span class="mw-page-title-main">Auranofin</span> Chemical compound

Auranofin is a gold salt classified by the World Health Organization as an antirheumatic agent. It has the brand name Ridaura.

<span class="mw-page-title-main">Miltefosine</span> Phospholipid drug

Miltefosine, sold under the trade name Impavido among others, is a medication mainly used to treat leishmaniasis and free-living amoeba infections such as Naegleria fowleri and Balamuthia mandrillaris. This includes the three forms of leishmaniasis: cutaneous, visceral and mucosal. It may be used with liposomal amphotericin B or paromomycin. It is taken by mouth.

<span class="mw-page-title-main">Medical microbiology</span> Branch of medical science

Medical microbiology, the large subset of microbiology that is applied to medicine, is a branch of medical science concerned with the prevention, diagnosis and treatment of infectious diseases. In addition, this field of science studies various clinical applications of microbes for the improvement of health. There are four kinds of microorganisms that cause infectious disease: bacteria, fungi, parasites and viruses, and one type of infectious protein called prion.

Malaria vaccines are vaccines that prevent malaria, a mosquito-borne infectious disease which annually affects an estimated 247 million people worldwide and causes 619,000 deaths. The first approved vaccine for malaria is RTS,S, known by the brand name Mosquirix. As of April 2023, the vaccine has been given to 1.5 million children living in areas with moderate-to-high malaria transmission. It requires at least three doses in infants by age 2, and a fourth dose extends the protection for another 1–2 years. The vaccine reduces hospital admissions from severe malaria by around 30%.

<span class="mw-page-title-main">Dalbavancin</span> Antibiotic used to treat MRSA

Dalbavancin, sold under the brand names Dalvance in the US and Xydalba in the EU among others, is a second-generation lipoglycopeptide antibiotic medication. It belongs to the same class as vancomycin, the most widely used and one of the treatments available to people infected with methicillin-resistant Staphylococcus aureus (MRSA).

<span class="mw-page-title-main">Taurolidine</span> Antimicrobial compound

Taurolidine is an antimicrobial that is used to prevent infections in catheters. Side effects and the induction of bacterial resistance is uncommon. It is also being studied as a treatment for cancer.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with Plasmodium falciparum, the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic – tropical and subtropical geographic areas. Placental malaria has also been demonstrated to occur in animal models, including in rodent and non-human primate models.

<i>Streptomyces antibioticus</i> Species of bacterium

Streptomyces antibioticus is a gram-positive bacterium discovered in 1941 by Nobel-prize-winner Selman Waksman and H. Boyd Woodruff. Its name is derived from the Greek "strepto-" meaning "twisted", alluding to this genus' chain-like spore production, and "antibioticus", referring to this species' extensive antibiotic production. Upon its first characterization, it was noted that S. antibioticus produces a distinct soil odor.

<span class="mw-page-title-main">Murepavadin</span> Chemical compound

Murepavadin also known as POL7080 is a Pseudomonas specific peptidomimetic antibiotic. It is a synthetic cyclic beta hairpin peptidomimetic based on the cationic antimicrobial peptide protegrin I (PG-1) and the first example of an outer membrane protein-targeting antibiotic class with a novel, nonlytic mechanism of action, highly active and selective against the protein transporter LptD of Pseudomonas aeruginosa. In preclinical studies the compound was highly active on a broad panel of clinical isolates including multi-drug resistant Pseudomonas bacteria with outstanding in vivo efficacy in sepsis, lung, and thigh infection models. Intravenous murepavadin is in development for the treatment of bacterial hospital-acquired pneumonia and bacterial ventilator-associated pneumonia due to Pseudomonas aeruginosa.

Tartrolons are a group of boron-containing macrolide antibiotics discovered in 1994 from the culture broth of the myxobacterium Sorangium cellulosum. Two variants of tartrolons, A and B, were identified. Tartrolon B contains a boron atom, while tartrolon A does not.

References

  1. 1 2 Hütter R, Keller-Schierlein W, Knüsel F, Prelog V, Rodgers GC, Suter P, et al. (January 1967). "[The metabolic products of microorganisms. Boromycin]". Helvetica Chimica Acta. 50 (6): 1533–1539. doi:10.1002/hlca.19670500612. PMID   6081908.
  2. 1 2 3 4 5 6 Rezanka T, Sigler K (February 2008). "Biologically active compounds of semi-metals". Phytochemistry. 69 (3): 585–606. Bibcode:2008PChem..69..585R. doi:10.1016/j.phytochem.2007.09.018. PMID   17991498.
  3. 1 2 3 Abenoja J, Cotto-Rosario A, O'Connor R (March 2021). "Boromycin Has Potent Anti-Toxoplasma and Anti-Cryptosporidium Activity". Antimicrobial Agents and Chemotherapy. 65 (4). doi:10.1128/AAC.01278-20. PMC   8097477 . PMID   33468470.
  4. 1 2 3 Kohno J, Kawahata T, Otake T, Morimoto M, Mori H, Ueba N, et al. (June 1996). "Boromycin, an anti-HIV antibiotic". Bioscience, Biotechnology, and Biochemistry. 60 (6): 1036–1037. doi: 10.1271/bbb.60.1036 . PMID   8695905.
  5. 1 2 Miyatake SI, Wanibuchi M, Hu N, Ono K (August 2020). "Boron neutron capture therapy for malignant brain tumors". Journal of Neuro-Oncology. 149 (1): 1–11. doi:10.1007/s11060-020-03586-6. hdl: 2433/226821 . PMID   32676954. S2CID   220577322.
  6. Chien JY, Friedrich S, Heathman MA, de Alwis DP, Sinha V (October 2005). "Pharmacokinetics/Pharmacodynamics and the stages of drug development: role of modeling and simulation". The AAPS Journal. 7 (3): E544–E559. doi:10.1208/aapsj070355. PMC   2751257 . PMID   16353932.
  7. Mead S, Tagliavini F (2018). "Clinical trials". Human Prion Diseases. Handbook of Clinical Neurology. Vol. 153. Elsevier. pp. 431–444. doi:10.1016/B978-0-444-63945-5.00024-6. ISBN   9780444639455. PMID   29887150.
  8. Mehta M, Schug B, Blume HH, Beuerle G, Jiang W, Koenig J, et al. (November 2023). "The Global Bioequivalence Harmonisation Initiative (GBHI): Report of the fifth international EUFEPS/AAPS conference". European Journal of Pharmaceutical Sciences. 190: 106566. doi: 10.1016/j.ejps.2023.106566 . PMID   37591469. S2CID   260943533.
  9. Lee J, Gong Y, Bhoopathy S, DiLiberti CE, Hooker AC, Rostami-Hodjegan A, et al. (November 2021). "Public Workshop Summary Report on Fiscal Year 2021 Generic Drug Regulatory Science Initiatives: Data Analysis and Model-Based Bioequivalence". Clinical Pharmacology and Therapeutics. 110 (5): 1190–1195. doi:10.1002/cpt.2120. PMID   33236362. S2CID   227165142.
  10. Pepin XJ, Dressman J, Parrott N, Delvadia P, Mitra A, Zhang X, et al. (February 2021). "In Vitro Biopredictive Methods: A Workshop Summary Report". Journal of Pharmaceutical Sciences. 110 (2): 567–583. doi: 10.1016/j.xphs.2020.09.021 . PMID   32956678. S2CID   221842404.
  11. Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV (2020). "Cell Culture Based in vitro Test Systems for Anticancer Drug Screening". Frontiers in Bioengineering and Biotechnology. 8: 322. doi: 10.3389/fbioe.2020.00322 . PMC   7160228 . PMID   32328489.
  12. de Carvalho LP, Groeger-Otero S, Kreidenweiss A, Kremsner PG, Mordmüller B, Held J (2021). "Boromycin has Rapid-Onset Antibiotic Activity Against Asexual and Sexual Blood Stages of Plasmodium falciparum". Frontiers in Cellular and Infection Microbiology. 11: 802294. doi: 10.3389/fcimb.2021.802294 . PMC   8795978 . PMID   35096650.
  13. Kumar V, Bhargava G (2022). "Editorial: Protozoal infections: Treatment and challenges". Frontiers in Cellular and Infection Microbiology. 12: 1002602. doi: 10.3389/fcimb.2022.1002602 . PMC   9471550 . PMID   36118046.