Streptomyces antibioticus

Last updated

Streptomyces antibioticus
Streptomyces antibioticus subspecies antibioticus NRRL B-1701 (Type Strain).jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Species:
S. antibioticus
Binomial name
Streptomyces antibioticus
(Waksman and Woodruff 1941) Waksman and Henrici 1948 (Approved Lists 1980)

Streptomyces antibioticus (previously known as Actinomyces antibioticus) is a gram-positive bacterium discovered in 1941 by Nobel-prize-winner Selman Waksman and H. Boyd Woodruff. [1] [2] Its name is derived from the Greek "strepto-" meaning "twisted", alluding to this genus' chain-like spore production, [3] and "antibioticus", referring to this species' extensive antibiotic production. [2] Upon its first characterization, it was noted that S. antibioticus produces a distinct soil odor. [2]

Contents

Discovery

Streptomyces antibioticus was discovered by Selman Waksman and H. Boyd Woodruff, who named the bacterium Actinomyces antibioticus. [2] In their 1941 publication, Waksman and Woodruff describe their use of the "bacterial-agar plate method", in which they mixed a suspension of E. coli with washed agar containing 1.5% NaCl and 0.5% K3PO4 . [2] To this blend, they added "fresh field or garden soil" that was diluted with sterile tap water, and plated their final mixture. [2] They concluded that "bacterial antagonists", that is, antibiotic producing organisms, would produce clear patches in the agar. [2] Through this method they isolated and characterized Actinomyces antibioticus. [2] Two years later, Waksman renamed the organism Streptomyces antibioticus. [3]

Characteristics

Phylogeny

Streptomycesantibioticus belongs to the family Streptomycetacae, [3] which contains two other genera: Micromonospora [3] and Kitasatospora . [4] 16S rRNA gene-based phylogeny shows that within the Streptomyces clade, the species S. antibioticus is more closely related to Streptomyces griseorubor than to any other Streptomyces species. [5] One study showed that these two species form a late-diverging clade within the phylogenetic tree of the genus Streptomyces. [5]

Genomics

The NCBI's GenBank contains thousands of DNA sequences for S. antibioticus genes, partial genome sequences, and three complete genome sequences. [6] The currently available S. antibioticus genomes range in size from 8 to 10 million basepairs. [6] As with other members of the Actinomycetes, the S. antibioticus genome is known to have a high GC content (>55%). [1]

Physiology and ecology

Streptomyces species produce differentiated, branch-like structures known as hyphae, which collectively make up the organism's mycelium (plural mycelia). [7] For Streptomyces antibioticus, as with other Streptomyces species, mycelia can be divided into two types: aerial and substrate. [7] The substrate mycelium is formed for vegetative growth, whereas the aerial mycelium is formed for the purpose of spore production. [7] Aerial hyphae branch out from the substrate mycelium and subsequently differentiate into chains of spores. [7]

Streptomyces antibioticus is known to be an aerobic microorganism that resides in soil communities. [3] S. antibioticus has been demonstrated to grow in temperatures ranging from 28–37 °C. [2] As an Actinomycete, this microbe is inferred to behave as a mesophile in laboratory settings, having an optimum growth temperature between 25–30 °C. [1] As a member of the genus Streptomyces, S. antibioticus is inferred to live off of organic matter in the soil, and possess the ability to degrade large polymers such as chitin and keratin. [1] S. antibioticus has been shown to grow on several types of media, including gelatin, Litmus milk, Czapek's agar, and Peptone media. [2]

Medical relevance

A unique trait of Streptomyces antibioticus is its ability to produce several antibiotics of different classes. [8] [9] Upon its discovery, it was found that S. antibioticus produced a then novel substance named Actinomycin. [2] This substance was then separated into two compounds: Actinomycin A and Actinomycin B. [2] Actinomycin A was found to be highly bacteriostatic (bacteria hindering) against all bacteria it was tested with. [2] Actinomycin B displayed little bacteriostatic activity but was shown to be highly bactericidal (bacteria killing), particularly towards gram-positive bacteria. [2] Actinomycin is also known to display antifungal properties. [2]

The antibiotic Boromycin is also produced by S. antibioticus. [10] This compound was first isolated from a S. antibioticus strain found in an African soil sample. [10] Boromycin is active against gram-positive bacteria, but inactive against gram-negative bacteria. [10] Boromycin has also been shown to have antifungal and antiprotozoal properties. [10]

Certain Streptomyces antibioticus strains produce antibiotics that have yet to be named and thoroughly characterized, such as the one mentioned in a 1998 study from Calcutta University. [9] The antibiotic described was found to show antimicrobial activity against gram-negative bacteria, gram-positive bacteria, and pathogenic fungi. [9]

In addition to producing antibiotics, one strain of S. antibioticus has been discovered to induce a different species of Streptomyces to produce antibiotics. [11] Research done by Li et al. from Osaka University studied a strain of S. antibioticus that produced a molecule with the ability to induce the organism Streptomyces virginiae to produce the antibiotic Virginiamycin. [11]

Presently, bacterial diseases persist as a substantial cause of death worldwide. [12] To further exacerbate this issue, the discovery antibiotic-resistant strains of bacteria is steadily increasing, a problem that raises the demand for novel antibiotics. [12] Currently, over two thirds of the antibiotics clinically prescribed have been produced by species within the genus Streptomyces. [12] With the recent availability of whole genome sequences, Streptomyces species known for producing antibiotics are being studied for potential new antibiotics that may be present in their genomes, but not yet characterized. [13]

Related Research Articles

<span class="mw-page-title-main">Actinomycetota</span> Phylum of bacteria

The Actinomycetota are a diverse phylum of Gram-positive bacteria with high GC content. They can be terrestrial or aquatic. They are of great importance to land flora because of their contributions to soil systems. In soil they help to decompose the organic matter of dead organisms so the molecules can be taken up anew by plants. While this role is also played by fungi, Actinomycetota are much smaller and likely do not occupy the same ecological niche. In this role the colonies often grow extensive mycelia, as fungi do, and the name of an important order of the phylum, Actinomycetales, reflects that they were long believed to be fungi. Some soil actinomycetota live symbiotically with the plants whose roots pervade the soil, fixing nitrogen for the plants in exchange for access to some of the plant's saccharides. Other species, such as many members of the genus Mycobacterium, are important pathogens.

<span class="mw-page-title-main">Selman Waksman</span> Russian Jewish-American biochemist, microbiologist, and Nobel Laureate (1888–1973)

Selman Abraham Waksman was a Jewish American inventor, Nobel Prize laureate, biochemist and microbiologist whose research into the decomposition of organisms that live in soil enabled the discovery of streptomycin and several other antibiotics. A professor of biochemistry and microbiology at Rutgers University for four decades, he discovered several antibiotics, and he introduced procedures that have led to the development of many others. The proceeds earned from the licensing of his patents funded a foundation for microbiological research, which established the Waksman Institute of Microbiology located at the Rutgers University Busch Campus in Piscataway, New Jersey (USA). In 1952, he was awarded the Nobel Prize in Physiology or Medicine for "ingenious, systematic, and successful studies of the soil microbes that led to the discovery of streptomycin." Waksman and his foundation later were sued by Albert Schatz, one of his Ph.D. students and the discoverer of streptomycin, for minimizing Schatz's role in the discovery.

<i>Actinomyces</i> Genus of bacteria

Actinomyces is a genus of the Actinomycetia class of bacteria. They all are gram-positive and facultatively anaerobic, growing best under anaerobic conditions. Actinomyces species may form endospores, and while individual bacteria are rod-shaped, Actinomyces colonies form fungus-like branched networks of hyphae. The aspect of these colonies initially led to the incorrect assumption that the organism was a fungus and to the name Actinomyces, "ray fungus".

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<span class="mw-page-title-main">Actinomycetales</span> Order of Actinomycota

The Actinomycetales is an order of Actinomycetota. A member of the order is often called an actinomycete. Actinomycetales are generally gram-positive and anaerobic and have mycelia in a filamentous and branching growth pattern. Some actinomycetes can form rod- or coccoid-shaped forms, while others can form spores on aerial hyphae. Actinomycetales bacteria can be infected by bacteriophages, which are called actinophages. Actinomycetales can range from harmless bacteria to pathogens with resistance to antibiotics.

<span class="mw-page-title-main">Albert Schatz (scientist)</span> American microbiologist and antibiotic discoverer (1920–2005)

Albert Israel Schatz was an American microbiologist and academic who discovered streptomycin, the first antibiotic known to be effective for the treatment of tuberculosis. He graduated from Rutgers University in 1942 with a bachelor's degree in soil microbiology, and received his doctorate from Rutgers in 1945. His PhD research led directly to the discovery of streptomycin.

<i>Burkholderia cepacia</i> complex Species of bacterium

Burkholderia cepacia complex (BCC) is a species complex consisting of Burkholderia cepacia and at least 20 different biochemically similar species of Gram-negative bacteria. They are catalase-producing and lactose-nonfermenting. Members of BCC are opportunistic human pathogens that most often cause pneumonia in immunocompromised individuals with underlying lung disease. Patients with sickle-cell haemoglobinopathies are also at risk. The species complex also attacks young onion and tobacco plants, and displays a remarkable ability to digest oil.

<span class="mw-page-title-main">Boromycin</span> Chemical compound

Boromycin is a bacteriocidal polyether-macrolide antibiotic. It was initially isolated from the Streptomyces antibioticus, and is notable for being the first natural product found to contain the element boron. It is effective against most Gram-positive bacteria, but is ineffective against Gram-negative bacteria. Boromycin kills bacteria by negatively affecting the cytoplasmic membrane, resulting in the loss of potassium ions from the cell. Boromycin has not been approved as a drug for medical use.

<i>Streptomyces griseus</i> Species of bacterium

Streptomyces griseus is a species of bacteria in the genus Streptomyces commonly found in soil. A few strains have been also reported from deep-sea sediments. It is a Gram-positive bacterium with high GC content. Along with most other streptomycetes, S. griseus strains are well known producers of antibiotics and other such commercially significant secondary metabolites. These strains are known to be producers of 32 different structural types of bioactive compounds. Streptomycin, the first antibiotic ever reported from a bacterium, comes from strains of S. griseus. Recently, the whole genome sequence of one of its strains had been completed.

<i>Saccharopolyspora erythraea</i> Species of bacterium

Saccharopolyspora erythraea is a species of actinomycete bacteria within the genus Saccharopolyspora.

Streptomyces scabiei is a streptomycete bacterium species found in soils around the world. Unlike most of the 500 or so Streptomyces species it is a plant pathogen causing corky lesions to form on tuber and root crops as well as decreasing the growth of seedlings. Along with other closely related species it causes the potato disease common scab, which is an economically important disease in many potato growing areas. It was first described in 1892, being classified as a fungus, before being renamed in 1914 and again in 1948. Several other species of Streptomyces cause similar diseases to S. scabiei but other, more closely related species, do not.

<i>Streptomyces avermitilis</i> Species of bacterium

Streptomyces avermitilis is a species of bacteria in the genus Streptomyces. This bacterium was discovered by Satoshi Ōmura in Shizuoka Prefecture, Japan.

<i>Actinoplanes italicus</i> Species of bacterium

Actinoplanes italicus is distinguished by the cherry-red color of its vegetative mycelium, and by the production of soluble pigments. It is also known to produce sporangia when cultured on starch or skim milk agar. Very few strains have been found and cultured, thus A. italicus is relatively uncharacterized.

Rathayibacter toxicus is a phytopathogenic bacterium known for causing annual ryegrass toxicity (ARGT) commonly found in South and Western Australia.

Streptomyces albidoflavus is a bacterium species from the genus of Streptomyces which has been isolated from soil from Poland. Streptomyces albidoflavus produces dibutyl phthalate and streptothricins.

Streptomyces lavendulae is a species of bacteria from the genus Streptomyces. It is isolated from soils globally and is known for its production of medically useful biologically active metabolites. To see a photo of this organism click here.

In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.

<span class="mw-page-title-main">Streptomyces sp. myrophorea</span> Species of bacterium

Streptomyces sp. myrophorea, isolate McG1 is a species of Streptomyces, that originates from a (ethnopharmacology) folk cure in the townland of Toneel North in Boho, County Fermanagh. This area was previously occupied by the Druids and before this neolithic people who engraved the nearby Reyfad stones. Streptomyces sp. myrophorea is inhibitory to many species of ESKAPE pathogens, can grow at high pH (10.5) and can tolerate relatively high levels of radioactivity.

Peptidiphaga gingivicola is a Gram-positive, non-spore forming, coccus shaped bacterium. Coccus are spherical and generally round in shape. Coccus are differentiated by their groupings that can range from chains, groups, or grape-like clusters. Peptidiphaga gingivicola was observed to grow in groups of 2-5 cocci between 0.2-0.9 mm in diameter. Growth was observed when cultured under anaerobic conditions between 33 and 40 degrees celsius on Blood Brucella agar for 4 days. Peptidiphaga gingivicola has been cultured from patients with periodontal disease, primarily caused by bacterial plaque formation on the gum and teeth of the oral cavity. The microbe is known to break down peptides of the gum causing tissue damage and tooth decay, leading to serious implications for oral health.

Actinomyces massiliensis is an anaerobic, mesophilic, Gram-positive bacterium originally isolated from a human blood sample and belonging to the genus Actinomyces.

References

  1. 1 2 3 4 M Goodfellow, and; Williams, S. T. (2003-11-28). "Ecology of Actinomycetes". Annual Review of Microbiology. 37: 189–216. doi:10.1146/annurev.mi.37.100183.001201. PMID   6357051.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Waksman, S. A.; Woodruff, H. B. (1941-08-01). "Actinomyces antibioticus, a New Soil Organism Antagonistic to Pathogenic and Non-pathogenic Bacteria". Journal of Bacteriology. 42 (2): 231–249. doi:10.1128/jb.42.2.231-249.1941. ISSN   0021-9193. PMC   374755 . PMID   16560451.
  3. 1 2 3 4 5 Waksman, S. A.; Henrici, A. T. (1943-10-01). "The Nomenclature and Classification of the Actinomycetes". Journal of Bacteriology. 46 (4): 337–341. doi:10.1128/jb.46.4.337-341.1943. ISSN   0021-9193. PMC   373826 . PMID   16560709.
  4. Gao, Beile; Gupta, Radhey S. (2012-03-01). "Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria". Microbiology and Molecular Biology Reviews. 76 (1): 66–112. doi:10.1128/MMBR.05011-11. ISSN   1098-5557. PMC   3294427 . PMID   22390973.
  5. 1 2 Labeda, D. P.; Goodfellow, M.; Brown, R.; Ward, A. C.; Lanoot, B.; Vanncanneyt, M.; Swings, J.; Kim, S.-B.; Liu, Z. (2012-01-01). "Phylogenetic study of the species within the family Streptomycetaceae". Antonie van Leeuwenhoek. 101 (1): 73–104. doi:10.1007/s10482-011-9656-0. ISSN   1572-9699. PMID   22045019. S2CID   254229111.
  6. 1 2 Benson, Dennis A.; Karsch-Mizrachi, Ilene; Lipman, David J.; Ostell, James; Sayers, Eric W. (2011-01-01). "GenBank". Nucleic Acids Research. 39 (Database issue): D32–37. doi:10.1093/nar/gkq1079. ISSN   1362-4962. PMC   3013681 . PMID   21071399.
  7. 1 2 3 4 Manteca, Angel; Fernandez, Marisol; Sanchez, Jesus (2006-03-01). "Cytological and biochemical evidence for an early cell dismantling event in surface cultures of Streptomyces antibioticus". Research in Microbiology. 157 (2): 143–152. doi: 10.1016/j.resmic.2005.07.003 . ISSN   0923-2508. PMID   16171979.
  8. Benedict, R. G. (1953). "Antibiotics produced by Actinomycetes". Botanical Review. 19 (5): 229–320. Bibcode:1953BotRv..19..229B. doi:10.1007/bf02861819. JSTOR   4353501. S2CID   8764259.
  9. 1 2 3 Haque, S.F.; Laskar, S.; Sen, S.K.; Pal, S.C. (1998). "Physicochemical Properties of Non-aromatic Broad-spectrum Antibiotic of Streptomyces antibioticus Sr15. 4". Microbiological Research. 153 (2): 153–156. doi:10.1016/s0944-5013(98)80034-7.
  10. 1 2 3 4 Chen, Tom S. S.; Chang, Ching-Jer; Floss, Heinz G. (1981-06-01). "Biosynthesis of boromycin". The Journal of Organic Chemistry. 46 (13): 2661–2665. doi:10.1021/jo00326a010. ISSN   0022-3263.
  11. 1 2 Li, Wang; Nihira, Takuya; Sakuda, Shohei; Nishida, Takuo; Yamada, Yasuhiro (1992). "New inducing factors for virginiamycin production from Streptomyces antibioticus". Journal of Fermentation and Bioengineering. 74 (4): 214–217. doi:10.1016/0922-338x(92)90112-8.
  12. 1 2 3 de Lima Procópio, Rudi Emerson; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de (2012). "Antibiotics produced by Streptomyces". The Brazilian Journal of Infectious Diseases. 16 (5): 466–471. doi: 10.1016/j.bjid.2012.08.014 . PMID   22975171.
  13. Zhang, Hongyu; Wang, Hongbo; Wang, Yipeng; Cui, Hongli; Xie, Zeping; Pu, Yang; Pei, Shiqian; Li, Fuchao; Qin, Song (2012-07-01). "Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007". FEMS Microbiology Letters. 332 (2): 105–112. doi: 10.1111/j.1574-6968.2012.02582.x . ISSN   0378-1097. PMID   22536997.