Protozoa

Last updated
Clockwise from top left: Blepharisma japonicum, a ciliate; Giardia muris, a parasitic flagellate; Centropyxis aculeata, a testate (shelled) amoeba; Peridinium willei, a dinoflagellate; Chaos carolinense, a naked amoebozoan; Desmerella moniliformis, a choanoflagellate Protozoa collage 2.jpg
Clockwise from top left: Blepharisma japonicum , a ciliate; Giardia muris , a parasitic flagellate; Centropyxis aculeata , a testate (shelled) amoeba; Peridinium willei , a dinoflagellate; Chaos carolinense , a naked amoebozoan; Desmerella moniliformis , a choanoflagellate

Protozoa (also protozoan, plural protozoans) is an informal term for single-celled eukaryotes, either free-living or parasitic, which feed on organic matter such as other microorganisms or organic tissues and debris. [1] [2] Historically, the protozoa were regarded as "one-celled animals", because they often possess animal-like behaviors, such as motility and predation, and lack a cell wall, as found in plants and many algae. [3] [4] Although the traditional practice of grouping protozoa with animals is no longer considered valid, the term continues to be used in a loose way to identify single-celled organisms that can move independently and feed by heterotrophy.

Parasitism Living on or in a host organism and causing harm to it

In evolutionary biology, parasitism is a relationship between species, where one organism, the parasite, lives on or in another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson has characterised parasites as "predators that eat prey in units of less than one". Parasites include protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes. There are six major parasitic strategies of exploitation of animal hosts, namely parasitic castration, directly transmitted parasitism, trophically transmitted parasitism, vector-transmitted parasitism, parasitoidism, and micropredation.

Microorganism Microscopic living organism

A microorganism, or microbe, is a microscopic organism, which may exist in its single-celled form or in a colony of cells.

Animal Kingdom of motile multicellular eukaryotic heterotrophic organisms

Animals are multicellular eukaryotic organisms that form the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 millionths of a metre to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The kingdom Animalia includes humans, but in colloquial use the term animal often refers only to non-human animals. The study of non-human animals is known as zoology.

Contents

In some systems of biological classification, Protozoa is a high-level taxonomic group. When first introduced in 1818, Protozoa was erected as a taxonomic class, [5] but in later classification schemes it was elevated to a variety of higher ranks, including phylum, subkingdom and kingdom. In a series of classifications proposed by Thomas Cavalier-Smith and his collaborators since 1981, Protozoa has been ranked as a kingdom. [6] [7] [8] The seven-kingdom scheme presented by Ruggiero et al. in 2015, places eight phyla under Kingdom Protozoa: Euglenozoa, Amoebozoa, Metamonada, Choanozoa sensu Cavalier-Smith, Loukozoa, Percolozoa, Microsporidia and Sulcozoa. [9] Notably, this kingdom excludes several major groups of organisms traditionally placed among the protozoa, including the ciliates, dinoflagellates, foraminifera, and the parasitic apicomplexans, all of which are classified under Kingdom Chromista. Kingdom Protozoa, as defined in this scheme, does not form a natural group or clade, but a paraphyletic group or evolutionary grade, within which the members of Fungi, Animalia and Chromista are thought to have evolved. [9]

Taxon Group of one or more populations of an organism or organisms which have distinguishing characteristics in common

In biology, a taxon is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and given a particular ranking, especially if and when it is accepted or becomes established. It is not uncommon, however, for taxonomists to remain at odds over what belongs to a taxon and the criteria used for inclusion. If a taxon is given a formal scientific name, its use is then governed by one of the nomenclature codes specifying which scientific name is correct for a particular grouping.

Taxonomy (biology) The science of identifying, describing, defining and naming groups of biological organisms

In biology, taxonomy is the science of naming, defining (circumscribing) and classifying groups of biological organisms on the basis of shared characteristics. Organisms are grouped together into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a super-group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

In biological classification, class is a taxonomic rank, as well as a taxonomic unit, a taxon, in that rank. Other well-known ranks in descending order of size are life, domain, kingdom, phylum, order, family, genus, and species, with class fitting between phylum and order.

History

Class Protozoa, order Infusoria, family Monades by Georg August Goldfuss, c. 1844 Georg August Goldfuss Protozoa Infusoria Monades.jpg
Class Protozoa, order Infusoria, family Monades by Georg August Goldfuss, c. 1844

The word "protozoa" (singular protozoon or protozoan) was coined in 1818 by zoologist Georg August Goldfuss, as the Greek equivalent of the German Urthiere, meaning "primitive, or original animals" ( ur- ‘proto-’ + Thier ‘animal’). Goldfuss created Protozoa as a class containing what he believed to be the simplest animals. [5] Originally, the group included not only single-celled microorganisms but also some "lower" multicellular animals, such as rotifers, corals, sponges, jellyfish, bryozoa and polychaete worms. [10] The term Protozoa is formed from the Greek words πρῶτος (prôtos), meaning "first", and ζῶα (zôa), plural of ζῶον (zôon), meaning "animal". [11] [12] The use of Protozoa as a formal taxon has been discouraged by some researchers, mainly because the term implies kinship with animals (Metazoa) [13] [14] and promotes an arbitrary separation of "animal-like" from "plant-like" organisms. [15]

Georg August Goldfuss paleontologist, zoologist and botanist

Georg August Goldfuss was a German palaeontologist, zoologist and botanist.

Multicellular organism Organism that consists of more than one cell

Multicellular organisms are organisms that consist of more than one cell, in contrast to unicellular organisms.

Rotifer phylum of animals

The rotifers, commonly called wheel animals or wheel animalcules, make up a phylum (Rotifera) of microscopic and near-microscopic pseudocoelomate animals.

In 1848, as a result of advancements in cell theory pioneered by Theodor Schwann and Matthias Schleiden, the anatomist and zoologist C. T. von Siebold proposed that the bodies of protozoans such as ciliates and amoebae consisted of single cells, similar to those from which the multicellular tissues of plants and animals were constructed. Von Siebold redefined Protozoa to include only such unicellular forms, to the exclusion of all metazoa (animals). [16] At the same time, he raised the group to the level of a phylum containing two broad classes of microorganisms: Infusoria (mostly ciliates and flagellated algae), and Rhizopoda (amoeboid organisms). The definition of Protozoa as a phylum or sub-kingdom composed of "unicellular animals" was adopted by the zoologist Otto Bütschli—celebrated at his centenary as the "architect of protozoology" [17] —and the term came into wide use.

Cell theory scientific theory that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells

In biology, cell theory is the historic scientific theory, now universally accepted, that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all organisms and also the basic unit of reproduction. With continual improvements made to microscopes over time, magnification technology advanced enough to discover cells in the 17th century. This discovery is largely attributed to Robert Hooke, and began the scientific study of cells, also known as cell biology. Over a century later, many debates about cells began amongst scientists. Most of these debates involved the nature of cellular regeneration, and the idea of cells as a fundamental unit of life. Cell theory was eventually formulated in 1839. This is usually credited to Matthias Schleiden and Theodor Schwann. However, many other scientists like Rudolf Virchow contributed to the theory. It was an important step in the movement away from spontaneous generation.

Theodor Schwann German physiologist

Theodor Schwann was a German physician and physiologist. His most significant contribution to biology is considered to be the extension of cell theory to animals. Other contributions include the discovery of Schwann cells in the peripheral nervous system, the discovery and study of pepsin, the discovery of the organic nature of yeast, and the invention of the term metabolism.

Matthias Jakob Schleiden botanist and philosopher

Matthias Jakob Schleiden (German pronunciation: [maˈtiːas ˈjaːkɔp ˈʃlaɪ̯dn̩]; was a German botanist and co-founder of cell theory, along with Theodor Schwann and Rudolf Virchow.

John Hogg's illustration of the Four Kingdoms of Nature, showing "Primigenal" as a greenish haze at the base of the Animals and Plants, 1860 John Hogg -- Primigenum or Protoctista.jpg
John Hogg's illustration of the Four Kingdoms of Nature, showing "Primigenal" as a greenish haze at the base of the Animals and Plants, 1860

As a phylum under Animalia, the Protozoa were firmly rooted in the old "two-kingdom" classification of life, according to which all living beings were classified as either animals or plants. As long as this scheme remained dominant, the protozoa were understood to be animals and studied in departments of Zoology, while photosynthetic microorganisms and microscopic fungi—the so-called Protophyta—were assigned to the Plants, and studied in departments of Botany. [18]

Criticism of this system began in the latter half of the 19th century, with the realization that many organisms met the criteria for inclusion among both plants and animals. For example, the algae Euglena and Dinobryon have chloroplasts for photosynthesis, but can also feed on organic matter and are motile. In 1860, John Hogg argued against the use of "protozoa", on the grounds that "naturalists are divided in opinion—and probably some will ever continue so—whether many of these organisms, or living beings, are animals or plants." [13] As an alternative, he proposed a new kingdom called Primigenum, consisting of both the protozoa and unicellular algae (protophyta), which he combined together under the name "Protoctista". In Hoggs's conception, the animal and plant kingdoms were likened to two great "pyramids" blending at their bases in the Kingdom Primigenum.

<i>Euglena</i> genus of unicellular flagellate protists

Euglena is a genus of single cell flagellate eukaryotes. It is the best known and most widely studied member of the class Euglenoidea, a diverse group containing some 54 genera and at least 800 species. Species of Euglena are found in freshwater and salt water. They are often abundant in quiet inland waters where they may bloom in numbers sufficient to color the surface of ponds and ditches green (E. viridis) or red (E. sanguinea).

<i>Dinobryon</i> genus of algae

Dinobryon is a type of microscopic algae. It is one of the 22 genera in the family Dinobryaceae. Dinobryon are mixotrophs, capable of obtaining energy and carbon through photosynthesis and phagotrophy of bacteria. The genus comprises at least 37 described species. The best-known species are D. cylindricum and D. divergens, which come to the attention of humans annually due to transient blooms in the photic zone of temperate lakes and ponds. Such blooms may produce volatile organic compounds (VOCs) that produce odors and affect water quality.

Chloroplast plant organelle that conducts photosynthesis

Chloroplasts are organelles that conduct photosynthesis, where the photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules ATP and NADPH while freeing oxygen from water in plant and algal cells. They then use the ATP and NADPH to make organic molecules from carbon dioxide in a process known as the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, much amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in unicellular algae, up to 100 in plants like Arabidopsis and wheat.

Six years later, Ernst Haeckel also proposed a third kingdom of life, which he named Protista. At first, Haeckel included a few multicellular organisms in this kingdom, but in later work he restricted the Protista to single-celled organisms, or simple colonies whose individual cells are not differentiated into different kinds of tissues.

Despite these proposals, Protozoa emerged as the preferred taxonomic placement for heterotrophic microorganisms such as amoebae and ciliates, and remained so for more than a century. In the course of the 20th century, however, the old "two kingdom" system began to weaken, with the growing awareness that fungi did not belong among the plants, and that most of the unicellular protozoa were no more closely related to the animals than they were to the plants. By mid-century, some biologists, such as Herbert Copeland, Robert H. Whittaker and Lynn Margulis, advocated the revival of Haeckel's Protista or Hogg's Protoctista as a kingdom-level eukaryotic group, alongside Plants, Animals and Fungi. [18] A variety of multi-kingdom systems were proposed, and Kingdoms Protista and Protoctista became well established in biology texts and curricula. [19] [20] [21]

While many taxonomists have abandoned Protozoa as a high-level group, Thomas Cavalier-Smith has retained it as a kingdom in the various classifications he has proposed. As of 2015, Cavalier-Smith's Protozoa excludes several major groups of organisms traditionally placed among the protozoa, including the ciliates, dinoflagellates and foraminifera (all members of the SAR supergroup). In its current form, his kingdom Protozoa is a paraphyletic group which includes a common ancestor and most of its descendants, but excludes two important clades that branch within it: the animals and fungi. [9]

Since the protozoa, as traditionally defined, can no longer be regarded as "primitive animals" the terms "protists", "Protista" or "Protoctista" are sometimes preferred. In 2005, members of the Society of Protozoologists voted to change its name to the International Society of Protistologists. [22]

Characteristics

Size

Protozoa, as traditionally defined, range in size from as little as 1 micrometre to several millimetres, or more. [23] Among the largest are the deep-sea–dwelling xenophyophores, single-celled foraminifera whose shells can reach 20 cm in diameter. [24]

The ciliate Spirostomum ambiguum can attain 3 mm in length Spirostomum.jpeg
The ciliate Spirostomum ambiguum can attain 3 mm in length
SpeciesCell typeSize in micrometres
Plasmodium falciparum malaria parasite, trophozoite phase [25] 1-2
Massisteria voersi free-living cercozoan amoeboid [26] 2.3–3
Bodo saltans free living kinetoplastid flagellate [27] 5-8
Plasmodium falciparum malaria parasite, gametocyte phase [28] 7-14
Trypanosoma cruzi parasitic kinetoplastid, Chagas disease [29] 14-24
Entamoeba histolytica parasitic amoebozoan [30] 15–60
Balantidium coli parasitic ciliate [31] 50-100
Paramecium caudatum free-living ciliate [32] 120-330
Amoeba proteus free-living amoebozoan [33] 220–760
Noctiluca scintillans free-living dinoflagellate [34] 700–2000
Syringammina fragilissima foraminiferan amoeboid [24] up to 200000

Habitat

Free-living protozoans are common and often abundant in fresh, brackish and salt water, as well as other moist environments, such as soils and mosses. Some species thrive in extreme environments such as hot springs [35] and hypersaline lakes and lagoons. [36] All protozoa require a moist habitat; however, some can survive for long periods of time in dry environments, by forming resting cysts which enable them to remain dormant until conditions improve.

Parasitic and symbiotic protozoa live on or within other organisms, including vertebrates and invertebrates, as well as plants and other single-celled organisms. Some are harmless or beneficial to their host organisms; others may be significant causes of diseases, such as babesia, malaria and toxoplasmosis.

Isotricha intestinalis, a ciliate present in the rumen of sheep. Isotricha intestinalis.jpg
Isotricha intestinalis , a ciliate present in the rumen of sheep.

Association between protozoan symbionts and their host organisms can be mutually beneficial. Flagellated protozoans such as Trichonympha and Pyrsonympha inhabit the guts of termites, where they enable their insect host to digest wood by helping to break down complex sugars into smaller, more easily digested molecules. [37] A wide range of protozoans live commensally in the rumens of ruminant animals, such as cattle and sheep. These include flagellates, such as Trichomonas , and ciliated protozoa, such as Isotricha and Entodinium . [38] The ciliate subclass Astomatia is composed entirely of mouthless symbionts adapted for life in the guts of annelid worms. [39]

Feeding

All protozoans are heterotrophic, deriving nutrients from other organisms, either by ingesting them whole or consuming their organic remains and waste-products. Some protozoans take in food by phagocytosis, engulfing organic particles with pseudopodia (as amoebae do), or taking in food through a specialized mouth-like aperture called a cytostome. Others take in food by osmotrophy, absorbing dissolved nutrients through their cell membranes.[ citation needed ]

Parasitic protozoans use a wide variety of feeding strategies, and some may change methods of feeding in different phases of their life cycle. For instance, the malaria parasite Plasmodium feeds by pinocytosis during its immature trophozoite stage of life (ring phase), but develops a dedicated feeding organelle (cytostome) as it matures within a host's red blood cell. [40]

Paramecium bursaria, a ciliate which derives some of its nutrients from algal endosymbionts in the genus Chlorella Ameba 001.jpg
Paramecium bursaria , a ciliate which derives some of its nutrients from algal endosymbionts in the genus Chlorella

Protozoa may also live as mixotrophs, supplementing a heterotrophic diet with some form of autotrophy. Some protozoa form close associations with symbiotic photosynthetic algae, which live and grow within the membranes of the larger cell and provide nutrients to the host. Others practice kleptoplasty, stealing chloroplasts from prey organisms and maintaining them within their own cell bodies as they continue to produce nutrients through photosynthesis. The ciliate Mesodinium rubrum retains functioning plastids from the cryptophyte algae on which it feeds, using them to nourish themselves by autotrophy. These, in turn, may be passed along to dinoflagellates of the genus Dinophysis , which prey on Mesodinium rubrum but keep the enslaved plastids for themselves. Within Dinophysis, these plastids can continue to function for months. [41]

Motility

Organisms traditionally classified as protozoa are abundant in aqueous environments and soil, occupying a range of trophic levels. The group includes flagellates (which move with the help of whip-like structures called flagella), ciliates (which move by using hair-like structures called cilia) and amoebae (which move by the use of foot-like structures called pseudopodia). Some protozoa are sessile, and do not move at all.

Pellicle

Unlike plants, fungi and most types of algae, protozoans do not typically have a rigid cell wall, but are usually enveloped by elastic structures of membranes that permit movement of the cell. In some protozoans, such as the ciliates and euglenozoans, the cell is supported by a composite membranous envelope called the "pellicle". The pellicle gives some shape to the cell, especially during locomotion. Pellicles of protozoan organisms vary from flexible and elastic to fairly rigid. In ciliates and Apicomplexa, the pellicle is supported by closely packed vesicles called alveoli. In euglenids, it is formed from protein strips arranged spirally along the length of the body. Familiar examples of protists with a pellicle are the euglenoids and the ciliate Paramecium . In some protozoa, the pellicle hosts epibiotic bacteria that adhere to the surface by their fimbriae (attachment pili). [42]

Resting cyst of ciliated protozoan Dileptus viridis. Dileptus viridis cyst.jpg
Resting cyst of ciliated protozoan Dileptus viridis.

Life cycle

Life cycle of parasitic protozoan, Toxoplasma gondii Toxoplasmosis life cycle en.svg
Life cycle of parasitic protozoan, Toxoplasma gondii

Some protozoa have two-phase life cycles, alternating between proliferative stages (e.g., trophozoites) and dormant cysts. As cysts, protozoa can survive harsh conditions, such as exposure to extreme temperatures or harmful chemicals, or long periods without access to nutrients, water, or oxygen for periods of time. Being a cyst enables parasitic species to survive outside of a host, and allows their transmission from one host to another. When protozoa are in the form of trophozoites (Greek tropho = to nourish), they actively feed. The conversion of a trophozoite to cyst form is known as encystation, while the process of transforming back into a trophozoite is known as excystation.

All protozoans reproduce (not all) asexually by binary fission or multiple fission. Many protozoan species exchange genetic material by sexual means (typically, through conjugation); however, sexuality is generally decoupled from the process of reproduction, and does not immediately result in increased population. [43]

Although meiotic sex is widespread among present day eukaryotes, it has, until recently, been unclear whether or not eukaryotes were sexual early in their evolution. Due to recent advances in gene detection and other techniques, evidence has been found for some form of meiotic sex in an increasing number of protozoans of ancient lineage that diverged early in eukaryotic evolution. [44] (See eukaryote reproduction.) Thus, such findings suggest that meiotic sex arose early in eukaryotic evolution. Examples of protozoan meiotic sexuality are described in the articles Amoebozoa , Giardia lamblia , Leishmania , Plasmodium falciparum biology , Paramecium , Toxoplasma gondii , Trichomonas vaginalis and Trypanosoma brucei .

Classification

Historically, the Protozoa were classified as "unicellular animals", as distinct from the Protophyta, single-celled photosynthetic organisms (algae) which were considered primitive plants. Both groups were commonly given the rank of phylum, under the kingdom Protista. [45] In older systems of classification, the phylum Protozoa was commonly divided into several sub-groups, reflecting the means of locomotion. [46] Classification schemes differed, but throughout much of the 20th century the major groups of Protozoa included:

With the emergence of molecular phylogenetics and tools enabling researchers to directly compare the DNA of different organisms, it became evident that, of the main sub-groups of Protozoa, only the ciliates (Ciliophora) formed a natural group, or monophyletic clade (that is, a distinct lineage of organisms sharing common ancestry). The other classes or subphyla of Protozoa were all polyphyletic groups composed of organisms that, despite similarities of appearance or way of life, were not necessarily closely related to one another. In the system of eukaryote classification currently endorsed by the International Society of Protistologists, members of the old phylum Protozoa have been distributed among a variety of supergroups. [47]

Ecology

As components of the micro- and meiofauna, protozoa are an important food source for microinvertebrates. Thus, the ecological role of protozoa in the transfer of bacterial and algal production to successive trophic levels is important. As predators, they prey upon unicellular or filamentous algae, bacteria, and microfungi. Protozoan species include both herbivores and consumers in the decomposer link of the food chain. They also control bacteria populations and biomass to some extent.

Disease

Trophozoites of the amoebic dysentery pathogen Entamoeba histolytica with ingested human red blood cells (dark circles) Trophozoites of Entamoeba histolytica with ingested erythrocytes.JPG
Trophozoites of the amoebic dysentery pathogen Entamoeba histolytica with ingested human red blood cells (dark circles)

A number of protozoan pathogens are human parasites, causing diseases such as malaria (by Plasmodium ), amoebiasis, giardiasis, toxoplasmosis, cryptosporidiosis, trichomoniasis, Chagas disease, leishmaniasis, African trypanosomiasis (sleeping sickness), amoebic dysentery, acanthamoeba keratitis, and primary amoebic meningoencephalitis (naegleriasis).

The protozoan Ophryocystis elektroscirrha is a parasite of butterfly larvae, passed from female to caterpillar. Severely infected individuals are weak, unable to expand their wings, or unable to eclose, and have shortened lifespans, but parasite levels vary in populations. Infection creates a culling effect, whereby infected migrating animals are less likely to complete the migration. This results in populations with lower parasite loads at the end of the migration. [48] This is not the case in laboratory or commercial rearing, where after a few generations, all individuals can be infected. [49]

List of protozoan diseases in humans: [50]

DiseaseCausative agentSource of Transmission
Amoebiasis Entamoeba histolytica (Amoebozoa)Water, food
Acanthamoeba keratitis Acanthamoeba (Amoebozoa)Water, contaminated contact lens solution
Giardiasis Giardia lamblia (Metamonada)Water, Contact
Trichomoniasis Trichomonas vaginalis (Metamonada)Sexual contact
Dientamoebiasis Dientamoeba fragilis (Metamonada)Uncertain
African sleeping sickness (African trypanosomiasis) Trypanosoma brucei (Kinetoplastida) Tsetse fly (Glossina)
Chagas disease (American sleeping sickness) Trypanosoma cruzi (Kinetoplastida)Triatomine bug (Triatominae)
Leishmaniasis Leishmania spp. (Kinetoplastida)Phlebotomine Sandfly (Phlebotominae)
Balantidiasis Balantidium coli (Ciliate)Food, water
Malaria Plasmodium spp. (Apicomplexa)Mosquito (Anopheles)
Toxoplasmosis Toxoplasma gondii (Apicomplexa)Undercooked meat, cat feces, fetal infection in pregnancy
Babesiosis Babesia spp. (Apicomplexa)Deer tick ( Ixodes scapularis )
Cryptosporidiosis Cryptosporidium spp. (Apicomplexa)Fecal contamination of food or water
Cyclosporiasis Cyclospora cayetanensis (Apicomplexa)Fecal contamination of food or water

Related Research Articles

In biology, kingdom is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla.

Alveolate Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya, and are also called Alveolata.

Excavata Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is a major supergroup of unicellular organisms belonging to the domain Eukaryota. Introduced by Thomas Cavalier-Smith in 2002 as a new phylogenetic category, it contains a variety of free-living and symbiotic forms, and also includes some important parasites of humans, including Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They are classified based on their flagellar structures, and they are considered to be the most basal Flagellate lineage. Except for Euglenozoa, they are all non-photosynthetic.

Unicellular organism Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of only one cell, unlike a multicellular organism that consists of more than one cell. Unicellular organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Prokaryotes include bacteria and archaea. Many eukaryotes are multicellular, but the group includes the protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.8–4 billion years ago.

Thomas (Tom) Cavalier-Smith, FRS, FRSC, NERC Professorial Fellow, is a Professor of Evolutionary Biology in the Department of Zoology, at the University of Oxford. His research has led to discovery of a number of unicellular organisms (protists) and definition of taxonomic positions, such as introduction of the kingdom Chromista, and other groups including Chromalveolata, Opisthokonta, Rhizaria, and Excavata. He is well known for his system of classification of all organisms.

Microsporidia class of fungi

Microsporidia are a group of spore-forming unicellular parasites. They were once considered protozoans or protists, but are now known to be fungi, or a sister group to fungi. Loosely 1500 of the probably more than one million species are named now. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The named species of microsporidia usually infect one host species or a group of closely related taxa. Several species, most of which are opportunistic, also infect humans.

Yellow-green algae class of algae

Yellow-green algae or the Xanthophyceae (xanthophytes) are an important group of heterokont algae. Most live in fresh water, but some are found in marine and soil habitats. They vary from single-celled flagellates to simple colonial and filamentous forms. Xanthophyte chloroplasts contain the photosynthetic pigments chlorophyll a, chlorophyll c, β-carotene, and the carotenoid diadinoxanthin. Unlike other heterokonts, their chloroplasts do not contain fucoxanthin, which accounts for their lighter colour. Their storage polysaccharide is chrysolaminarin. Xanthophyte cell walls are produced of cellulose and hemicellulose. They appear to be the closest relatives of the brown algae.

<i>Stephanopogon</i>

Stephanopogon is a genus of flagellate marine protozoan that superficially resembles a ciliate.

Chromalveolata eukaryote supergroup

Chromalveolata was a eukaryote supergroup present in a major classification of 2005, then regarded as one of the six major groups within the eukaryotes. It was a refinement of the kingdom Chromista, first proposed by Thomas Cavalier-Smith in 1981. Chromalveolata was proposed to represent the organisms descended from a single secondary endosymbiosis involving a red alga and a bikont. The plastids in these organisms are those that contain chlorophyll c.

The phylum Sarcomastigophora belongs to the Protista or protoctista kingdom and it includes many unicellular or colonial, autotrophic, or heterotrophic organisms. It is characterized by flagellae, pseudopodia, or both.

Corticata, in the classification of eukaryotes, is a clade suggested by Cavalier-Smith to encompass the eukaryote supergroups of the following two groups:

Monera Kingdom of Prokryotes

Monera is a kingdom that contains unicellular organisms with a prokaryotic cell organization, such as bacteria. They are single-celled organisms with no true nuclear membrane.

Protist Unicellular organism of a diverse group of eukaryotic microorganisms

A protist is any eukaryotic organism that is not an animal, plant or fungus. The protists do not form a natural group, or clade, since they exclude certain eukaryotes; but, like algae or invertebrates, they are often grouped together for convenience. In some systems of biological classification, such as the popular five-kingdom scheme proposed by Robert Whittaker in 1969, the protists make up a kingdom called Protista, composed of "organisms which are unicellular or unicellular-colonial and which form no tissues".

In biology, a phylum is a level of classification or taxonomic rank below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent. Depending on definitions, the animal kingdom Animalia or Metazoa contains approximately 35 phyla, the plant kingdom Plantae contains about 14, and the fungus kingdom Fungi contains about 8 phyla. Current research in phylogenetics is uncovering the relationships between phyla, which are contained in larger clades, like Ecdysozoa and Embryophyta.

Myzozoa is a grouping of specific phyla within Alveolata, that either feed through myzocytosis, or were ancestrally capable of feeding through myzocytosis.

Ciliate phylum of protozoans

The ciliates are a group of protozoans characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

Amoeba polyphyletic group including different eucariot taxons

An amoeba, often called amoeboid, is a type of cell or unicellular organism which has the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebas do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

The classification system of life introduced by British zoologist Thomas Cavalier-Smith involves systematic arrangements of all life forms on earth. Following and improving the classification systems introduced by Carl Linnaeus, Ernst Haeckel, Robert Whittaker, and Carl Woese, Cavalier-Smith's classification attempts to incorporate the latest developments in taxonomy. His classification has been a major foundation in modern taxonomy, particularly with revisions and reorganisations of kingdoms and phyla.

The Scotokaryotes (Cavalier-Smith) or Opimoda is a proposed basal Neokaryote clade as sister of the Diaphoratickes. Basal Scotokaryote groupings are the Metamonads, the Malawimonas and the Podiata. The Discoba are sometimes seen as paraphyletic and basal Eukaryotes.

References

  1. Panno, Joseph (14 May 2014). The Cell: Evolution of the First Organism. Infobase Publishing. ISBN   9780816067367.
  2. Bertrand, Jean-Claude; Caumette, Pierre; Lebaron, Philippe; Matheron, Robert; Normand, Philippe; Sime-Ngando, Télesphore (2015-01-26). Environmental Microbiology: Fundamentals and Applications: Microbial Ecology. Springer. ISBN   9789401791182.
  3. Madigan, Michael T. (2012). Brock Biology of Microorganisms. Benjamin Cummings. ISBN   9780321649638.
  4. Yaeger, Robert G. (1996). Protozoa: Structure, Classification, Growth, and Development. NCBI. ISBN   9780963117212 . Retrieved 2018-03-23.
  5. 1 2 Goldfuß (1818). "Ueber die Classification der Zoophyten" [On the classification of zoophytes]. Isis, Oder, Encyclopädische Zeitung von Oken (in German). 2 (6): 1008–1019. From p. 1008: "Erste Klasse. Urthiere. Protozoa." (First class. Primordial animals. Protozoa.) [Note: each column of each page of this journal is numbered; there are two columns per page.]
  6. Cavalier-Smith, Thomas (1981). "Eukaryote kingdoms: seven or nine?". Bio Systems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID   7337818.
  7. Cavalier-Smith, Thomas (December 1993). "Kingdom protozoa and its 18 phyla". Microbiological Reviews. 57 (4): 953–994. PMC   372943 . PMID   8302218.
  8. Cavalier-Smith, Thomas (23 June 2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. PMC   2880060 . PMID   20031978.
  9. 1 2 3 Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D.; Kirk, Paul M. (29 April 2015). "A Higher Level Classification of All Living Organisms". PLoS ONE. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC   4418965 . PMID   25923521.
  10. Goldfuß, Georg August (1820). Handbuch der Zoologie. Erste Abtheilung [Handbook of Zoology. First Part.] (in German). Nürnberg, (Germany): Johann Leonhard Schrag. pp. XI–XIV.
  11. Bailly, Anatole (1981-01-01). Abrégé du dictionnaire grec français. Paris: Hachette. ISBN   978-2010035289. OCLC   461974285.
  12. Bailly, Anatole. "Greek-french dictionary online". www.tabularium.be. Retrieved 2018-10-05.
  13. 1 2 Hogg, John (1860). "On the distinctions of a plant and an animal, and on a fourth kingdom of nature". Edinburgh New Philosophical Journal. 2nd series. 12: 216–225.
  14. Scamardella, J. M. (December 1999). "Not plants or animals: a brief history of the origin of Kingdoms Protozoa, Protista and Protoctista". International Microbiology. 2 (4): 207–216. PMID   10943416.
  15. Copeland, Herbert F. (September–October 1947). "Progress Report on Basic Classification". The American Naturalist. 81 (800): 340–361. doi:10.1086/281531. JSTOR   2458229.
  16. Siebold (vol. 1); Stannius (vol. 2) (1848). Lehrbuch der vergleichenden Anatomie [Textbook of Comparative Anatomy] (in German). vol. 1: Wirbellose Thiere (Invertebrate animals). Berlin, (Germany): Veit & Co. p. 3. From p. 3: "Erste Hauptgruppe. Protozoa. Thiere, in welchen die verschiedenen Systeme der Organe nicht scharf ausgeschieden sind, und deren unregelmässige Form und einfache Organisation sich auf eine Zelle reduziren lassen." (First principal group. Protozoa. Animals, in which the different systems of organs are not sharply separated, and whose irregular form and simple organization can be reduced to one cell.)
  17. Dobell, C. (April 1951). "In memoriam Otto Bütschli (1848-1920) "architect of protozoology"". Isis; an International Review Devoted to the History of Science and Its Cultural Influences. 42 (127): 20–22. doi:10.1086/349230. PMID   14831973.
  18. 1 2 Taylor, F. J. R. 'Max' (11 January 2003). "The collapse of the two-kingdom system, the rise of protistology and the founding of the International Society for Evolutionary Protistology (ISEP)". International Journal of Systematic and Evolutionary Microbiology. 53 (6): 1707–1714. doi:10.1099/ijs.0.02587-0. PMID   14657097.
  19. Whittaker, R. H. (10 January 1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms". Science. 163 (3863): 150–160. Bibcode:1969Sci...163..150W. CiteSeerX   10.1.1.403.5430 . doi:10.1126/science.163.3863.150. PMID   5762760.
  20. Margulis, Lynn (1974). "Five-Kingdom Classification and the Origin and Evolution of Cells". In Dobzhansky, Theodosius; Hecht, Max K.; Steere, William C. (eds.). Evolutionary Biology. Springer. pp. 45–78. doi:10.1007/978-1-4615-6944-2_2. ISBN   978-1-4615-6946-6.
  21. Cavalier-Smith, Thomas (August 1998). "A revised six-kingdom system of life". Biological Reviews. 73 (3): 203–266. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID   9809012.
  22. "New President's Address". protozoa.uga.edu. Retrieved 1 May 2015.
  23. Singleton, Paul; Sainsbury, Diana (2001). Dictionary of microbiology and molecular biology. Wiley. ISBN   9780471941507.
  24. 1 2 Gooday, A.J.; Aranda da Silva, A. P.; Pawlowski, J. (1 December 2011). "Xenophyophores (Rhizaria, Foraminifera) from the Nazaré Canyon (Portuguese margin, NE Atlantic)". Deep-Sea Research Part II: Topical Studies in Oceanography. 58 (24–25): 2401–2419. Bibcode:2011DSRII..58.2401G. doi:10.1016/j.dsr2.2011.04.005.
  25. Ghaffar, Abdul. "Blood and Tissue Protozoa". Microbiology and Immunology On-Line. Retrieved 2018-03-23.
  26. Mylnikov, Alexander P.; Weber, Felix; Jürgens, Klaus; Wylezich, Claudia (August 2015). "Massisteria marina has a sister: Massisteria voersi sp. nov., a rare species isolated from coastal waters of the Baltic Sea". European Journal of Protistology. 51 (4): 299–310. doi:10.1016/j.ejop.2015.05.002. PMID   26163290.
  27. Mitchell, Gary C.; Baker, J. H.; Sleigh, M. A. (1 May 1988). "Feeding of a freshwater flagellate, Bodo saltans, on diverse bacteria". The Journal of Protozoology. 35 (2): 219–222. doi:10.1111/j.1550-7408.1988.tb04327.x.
  28. Ghaffar, Abdul. "Blood and tissue Protozoa". Microbiology and Immunology On-Line. Retrieved 2018-03-23.
  29. "Trypanosoma brucei". parasite.org.au. Retrieved 2018-03-23.
  30. "Microscopy of Entamoeba histolytica". msu.edu. Retrieved 2016-08-21.
  31. Lehman, Don. "Diagnostic parasitology". University of Delaware. Retrieved 2018-03-23.
  32. Taylor, Bruce. "Paramecium caudatum". Encyclopedia of Life. Retrieved 2018-03-23.
  33. "Amoeba proteus | Microworld". www.arcella.nl. Retrieved 2016-08-21.
  34. "Noctiluca scintillans". University of Tasmania, Australia. 2011-11-30. Retrieved 2018-03-23.
  35. Sheehan, Kathy B. (2005). Seen and Unseen: Discovering the Microbes of Yellowstone. Falcon. ISBN   9780762730933.
  36. Post, F. J.; Borowitzka, L. J.; Borowitzka, M. A.; Mackay, B.; Moulton, T. (1983-09-01). "The protozoa of a Western Australian hypersaline lagoon". Hydrobiologia. 105 (1): 95–113. Bibcode:2004HyBio.524..167W. doi:10.1007/BF00025180. ISSN   0018-8158.
  37. "Termite gut microbes | NOLL LAB". www.kennethnoll.uconn.edu. Retrieved 2018-03-21.
  38. Williams, A. G.; Coleman, G. S. (1997). The Rumen Microbial Ecosystem. Springer, Dordrecht. pp. 73–139. doi:10.1007/978-94-009-1453-7_3. ISBN   9789401071499.
  39. Lee, John J.; Leedale, Gordon F.; Bradbury, Phyllis Clarke (25 May 2000). An illustrated guide to the protozoa: organisms traditionally referred to as protozoa, or newly discovered groups. Society of Protozoologists. p. 634.
  40. Wiser, Mark F. "Biochemistry of Plasmodium". The Wiser Page. Retrieved 2018-03-22.
  41. Nishitani, Goh; Nagai, Satoshi; Baba, Katsuhisa; Kiyokawa, Susumu; Kosaka, Yuki; Miyamura, Kazuyoshi; Nishikawa, Tetsuya; Sakurada, Kiyonari; Shinada, Akiyoshi (May 2010). "High-Level Congruence of Myrionecta rubra Prey and Dinophysis Species Plastid Identities as Revealed by Genetic Analyses of Isolates from Japanese Coastal Waters". Applied and Environmental Microbiology. 76 (9): 2791–2798. doi:10.1128/AEM.02566-09. PMC   2863437 . PMID   20305031.
  42. Protozoa in biological research
  43. "Sex and Death in Protozoa". Cambridge University Press. Retrieved 2015-06-09.
  44. Bernstein H, Bernstein C (2013). Bernstein C, Bernstein H eds. Evolutionary Origin and Adaptive Function of Meiosis'. Meiosis. InTech. ISBN   978-953-51-1197-9
  45. Kudo, Richard R. (Richard Roksabro) (1954). Protozoology. MBLWHOI Library. Springfield, Ill., C. C. Thomas.
  46. Honigberg, B. M.; W. Balamuth; E. C. Bovee; J. O. Corliss; M. Gojdics; R. P. Hall; R. R. Kudo; N. D. Levine; A. R. Lobblich; J. Weiser (February 1964). "A Revised Classification of the Phylum Protozoa". Journal of Eukaryotic Microbiology. 11 (1): 7–20. doi:10.1111/j.1550-7408.1964.tb01715.x. PMID   14119564.
  47. Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah (2012-09-01). "The Revised Classification of Eukaryotes". Journal of Eukaryotic Microbiology. 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. PMC   3483872 . PMID   23020233.
  48. Bartel, Rebecca; Oberhauser, Karen; De Roode, Jacob; Atizer, Sonya (February 2011). "Monarch butterfly migration and parasite transmission in eastern North America". Ecology. 92 (2): 342–351. doi:10.1890/10-0489.1. PMID   21618914.
  49. Leong, K. L. H.; M. A. Yoshimura; H. K. Kaya; H. Williams (January 1997). "Instar Susceptibility of the Monarch Butterfly (Danaus plexippus) to the Neogregarine Parasite, Ophryocystis elektroscirrha". Journal of Invertebrate Pathology. 69 (1): 79–83. CiteSeerX   10.1.1.494.9827 . doi:10.1006/jipa.1996.4634. PMID   9028932.
  50. Usha mina, Pranav kumar (2014). Life science fundamental and practice part I.

Bibliography

General
Identification
Morphology
Physiology and biochemistry
Ecology
Parasitology
Methods